omarelshehy commited on
Commit
f0ebb68
1 Parent(s): a9431e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -45
README.md CHANGED
@@ -76,24 +76,6 @@ The model is trained using the MatryoshkaLoss for embeddings of size 1024, 786,
76
  - **Maximum Sequence Length:** 512 tokens
77
  - **Output Dimensionality:** 1024 tokens
78
  - **Similarity Function:** Cosine Similarity
79
- <!-- - **Training Dataset:** Unknown -->
80
- <!-- - **Language:** Unknown -->
81
- <!-- - **License:** Unknown -->
82
-
83
- ### Model Sources
84
-
85
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
86
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
87
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
88
-
89
- ### Full Model Architecture
90
-
91
- ```
92
- SentenceTransformer(
93
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
94
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
95
- )
96
- ```
97
 
98
  ## Usage
99
 
@@ -114,9 +96,9 @@ matryoshka_dim = 786
114
  model = SentenceTransformer("omarelshehy/Arabic-STS-Matryoshka", truncate_dim=matryoshka_dim)
115
  # Run inference
116
  sentences = [
117
- 'سوق للمنتجات داخل مبنى كبير ذو جدران بيضاء.',
118
- 'السوق يبيع الخضروات.',
119
- 'سوق المنتجات داخل مبنى صغير أسود الجدران.',
120
  ]
121
  embeddings = model.encode(sentences)
122
  print(embeddings.shape)
@@ -128,30 +110,6 @@ print(similarities.shape)
128
  # [3, 3]
129
  ```
130
 
131
- <!--
132
- ### Direct Usage (Transformers)
133
-
134
- <details><summary>Click to see the direct usage in Transformers</summary>
135
-
136
- </details>
137
- -->
138
-
139
- <!--
140
- ### Downstream Usage (Sentence Transformers)
141
-
142
- You can finetune this model on your own dataset.
143
-
144
- <details><summary>Click to expand</summary>
145
-
146
- </details>
147
- -->
148
-
149
- <!--
150
- ### Out-of-Scope Use
151
-
152
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
153
- -->
154
-
155
  ## Evaluation
156
 
157
  ### Metrics
 
76
  - **Maximum Sequence Length:** 512 tokens
77
  - **Output Dimensionality:** 1024 tokens
78
  - **Similarity Function:** Cosine Similarity
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  ## Usage
81
 
 
96
  model = SentenceTransformer("omarelshehy/Arabic-STS-Matryoshka", truncate_dim=matryoshka_dim)
97
  # Run inference
98
  sentences = [
99
+ 'أحب قراءة الكتب في أوقات فراغي.',
100
+ 'أستمتع بقراءة القصص في المساء قبل النوم.',
101
+ 'القراءة تعزز معرفتي وتفتح أمامي آفاق جديدة.',
102
  ]
103
  embeddings = model.encode(sentences)
104
  print(embeddings.shape)
 
110
  # [3, 3]
111
  ```
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113
  ## Evaluation
114
 
115
  ### Metrics