--- base_model: FacebookAI/xlm-roberta-large library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - mteb model-index: - name: omarelshehy/Arabic-STS-Matryoshka results: - dataset: config: ar-ar name: MTEB STS17 (ar-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 81.88865368687937 - type: cosine_spearman value: 82.90236782891859 - type: euclidean_pearson value: 81.21254869664341 - type: euclidean_spearman value: 82.28002933909444 - type: main_score value: 82.90236782891859 - type: manhattan_pearson value: 81.26482951395201 - type: manhattan_spearman value: 82.36146806563059 - type: pearson value: 81.88865526924 - type: spearman value: 82.89304993265725 task: type: STS license: apache-2.0 language: - ar --- # SentenceTransformer based on FacebookAI/xlm-roberta-large This is an **Arabic only** [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. The model is trained using the MatryoshkaLoss for embeddings of size 1024, 786, 512, 128, and 64 for storage optimization (See [Evaluation](#Evaluation)). ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub matryoshka_dim = 786 model = SentenceTransformer("omarelshehy/Arabic-STS-Matryoshka", truncate_dim=matryoshka_dim) # Run inference sentences = [ 'أحب قراءة الكتب في أوقات فراغي.', 'أستمتع بقراءة القصص في المساء قبل النوم.', 'القراءة تعزز معرفتي وتفتح أمامي آفاق جديدة.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.8256 | | **spearman_cosine** | **0.8275** | | pearson_manhattan | 0.8228 | | spearman_manhattan | 0.8284 | | pearson_euclidean | 0.8232 | | spearman_euclidean | 0.8289 | | pearson_dot | 0.8017 | | spearman_dot | 0.8004 | | pearson_max | 0.8256 | | spearman_max | 0.8289 | #### Embedding Size and Performance This plot shows the slight degradation of performance qith smaller embedding sizes (worth investigating for your case since the benefits are huge compared to the slight loss in performance) ![Plot](https://huggingface.co/omarelshehy/Arabic-STS-Matryoshka/resolve/main/performance_vs_embeddingsize.png) ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```