--- base_model: FacebookAI/xlm-roberta-large library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - mteb - bilingual model-index: - name: omarelshehy/Arabic-English-Matryoshka-STS results: - dataset: config: en-ar name: MTEB STS17 (en-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 79.79480510851795 - type: cosine_spearman value: 79.67609346073252 - type: euclidean_pearson value: 81.64087935350051 - type: euclidean_spearman value: 80.52588414802709 - type: main_score value: 79.67609346073252 - type: manhattan_pearson value: 81.57042957417305 - type: manhattan_spearman value: 80.44331526051143 - type: pearson value: 79.79480418294698 - type: spearman value: 79.67609346073252 task: type: STS - dataset: config: ar-ar name: MTEB STS17 (ar-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 82.22889478671283 - type: cosine_spearman value: 83.0533648934447 - type: euclidean_pearson value: 81.15891941165452 - type: euclidean_spearman value: 82.14034597386936 - type: main_score value: 83.0533648934447 - type: manhattan_pearson value: 81.17463976232014 - type: manhattan_spearman value: 82.09804987736345 - type: pearson value: 82.22889389569819 - type: spearman value: 83.0529662284269 task: type: STS - dataset: config: en-en name: MTEB STS17 (en-en) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 87.17053120821998 - type: cosine_spearman value: 87.05959159411456 - type: euclidean_pearson value: 87.63706739480517 - type: euclidean_spearman value: 87.7675347222274 - type: main_score value: 87.05959159411456 - type: manhattan_pearson value: 87.7006832512623 - type: manhattan_spearman value: 87.80128473941168 - type: pearson value: 87.17053012311975 - type: spearman value: 87.05959159411456 task: type: STS Language: - ar - en language: - ar - en --- # SentenceTransformer based on FacebookAI/xlm-roberta-large This is a Multilingual (Arabic-English) [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. The model can handle both languages separately pretty well but also interchangeably which opens many possibilities for different flexible applications but also for researchers who want to further develop arabic models :) The metrics from MTEB are good but don't focus completely on them anyway, test the model first and see if it works for you. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("omarelshehy/arabic-english-sts-matryoshka") # Run inference sentences = [ 'حب سعيد الواضح للأدب والموسيقى الغربية يتصادم باستمرار مع غضبه الصالح لما فعله الغرب للبقية.', 'Said loves Western literature and music but is angry about what the West has done to the rest.', 'سعيد يعتقد أن الغرب لديه أفضل من كل شيء.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```