Update structformer_as_hf.py
Browse files- structformer_as_hf.py +369 -10
structformer_as_hf.py
CHANGED
@@ -6,6 +6,13 @@ from transformers import PreTrainedModel
|
|
6 |
from transformers import PretrainedConfig
|
7 |
from transformers.modeling_outputs import MaskedLMOutput
|
8 |
from typing import List
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
##########################################
|
11 |
# HuggingFace Config
|
@@ -67,7 +74,6 @@ class Conv1d(nn.Module):
|
|
67 |
|
68 |
def __init__(self, hidden_size, kernel_size, dilation=1):
|
69 |
"""Initialization.
|
70 |
-
|
71 |
Args:
|
72 |
hidden_size: dimension of input embeddings
|
73 |
kernel_size: convolution kernel size
|
@@ -90,7 +96,6 @@ class Conv1d(nn.Module):
|
|
90 |
|
91 |
def forward(self, x):
|
92 |
"""Compute convolution.
|
93 |
-
|
94 |
Args:
|
95 |
x: input embeddings
|
96 |
Returns:
|
@@ -114,7 +119,6 @@ class MultiheadAttention(nn.Module):
|
|
114 |
out_proj=True,
|
115 |
relative_bias=True):
|
116 |
"""Initialization.
|
117 |
-
|
118 |
Args:
|
119 |
embed_dim: dimension of input embeddings
|
120 |
num_heads: number of self-attention heads
|
@@ -174,7 +178,6 @@ class MultiheadAttention(nn.Module):
|
|
174 |
|
175 |
def forward(self, query, key_padding_mask=None, attn_mask=None):
|
176 |
"""Compute multi-head self-attention.
|
177 |
-
|
178 |
Args:
|
179 |
query: input embeddings
|
180 |
key_padding_mask: 3D mask that prevents attention to certain positions
|
@@ -254,7 +257,6 @@ class TransformerLayer(nn.Module):
|
|
254 |
activation="leakyrelu",
|
255 |
relative_bias=True):
|
256 |
"""Initialization.
|
257 |
-
|
258 |
Args:
|
259 |
d_model: dimension of inputs
|
260 |
nhead: number of self-attention heads
|
@@ -285,7 +287,6 @@ class TransformerLayer(nn.Module):
|
|
285 |
|
286 |
def forward(self, src, attn_mask=None, key_padding_mask=None):
|
287 |
"""Pass the input through the encoder layer.
|
288 |
-
|
289 |
Args:
|
290 |
src: the sequence to the encoder layer (required).
|
291 |
attn_mask: the mask for the src sequence (optional).
|
@@ -301,6 +302,30 @@ class TransformerLayer(nn.Module):
|
|
301 |
|
302 |
return src3
|
303 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
##########################################
|
305 |
# Custom Models
|
306 |
##########################################
|
@@ -362,7 +387,6 @@ class Transformer(nn.Module):
|
|
362 |
pos_emb=False,
|
363 |
pad=0):
|
364 |
"""Initialization.
|
365 |
-
|
366 |
Args:
|
367 |
hidden_size: dimension of inputs and hidden states
|
368 |
nlayers: number of layers
|
@@ -437,7 +461,6 @@ class Transformer(nn.Module):
|
|
437 |
|
438 |
def forward(self, x, pos):
|
439 |
"""Pass the input through the encoder layer.
|
440 |
-
|
441 |
Args:
|
442 |
x: input tokens (required).
|
443 |
pos: position for each token (optional).
|
@@ -474,7 +497,6 @@ class StructFormer(Transformer):
|
|
474 |
relations=('head', 'child'),
|
475 |
weight_act='softmax'):
|
476 |
"""Initialization.
|
477 |
-
|
478 |
Args:
|
479 |
hidden_size: dimension of inputs and hidden states
|
480 |
nlayers: number of layers
|
@@ -548,7 +570,6 @@ class StructFormer(Transformer):
|
|
548 |
|
549 |
def parse(self, x, pos, embeds=None):
|
550 |
"""Parse input sentence.
|
551 |
-
|
552 |
Args:
|
553 |
x: input tokens (required).
|
554 |
pos: position for each token (optional).
|
@@ -735,6 +756,300 @@ class StructFormer(Transformer):
|
|
735 |
attentions=None,
|
736 |
)
|
737 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
738 |
##########################################
|
739 |
# HuggingFace Model
|
740 |
##########################################
|
@@ -760,5 +1075,49 @@ class StructformerModel(PreTrainedModel):
|
|
760 |
weight_act=config.weight_act
|
761 |
)
|
762 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
763 |
def forward(self, input_ids, labels=None, **kwargs):
|
764 |
return self.model(input_ids, labels=labels, **kwargs)
|
|
|
6 |
from transformers import PretrainedConfig
|
7 |
from transformers.modeling_outputs import MaskedLMOutput
|
8 |
from typing import List
|
9 |
+
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
10 |
+
from transformers.modeling_outputs import (
|
11 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
12 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
13 |
+
MaskedLMOutput,
|
14 |
+
SequenceClassifierOutput
|
15 |
+
)
|
16 |
|
17 |
##########################################
|
18 |
# HuggingFace Config
|
|
|
74 |
|
75 |
def __init__(self, hidden_size, kernel_size, dilation=1):
|
76 |
"""Initialization.
|
|
|
77 |
Args:
|
78 |
hidden_size: dimension of input embeddings
|
79 |
kernel_size: convolution kernel size
|
|
|
96 |
|
97 |
def forward(self, x):
|
98 |
"""Compute convolution.
|
|
|
99 |
Args:
|
100 |
x: input embeddings
|
101 |
Returns:
|
|
|
119 |
out_proj=True,
|
120 |
relative_bias=True):
|
121 |
"""Initialization.
|
|
|
122 |
Args:
|
123 |
embed_dim: dimension of input embeddings
|
124 |
num_heads: number of self-attention heads
|
|
|
178 |
|
179 |
def forward(self, query, key_padding_mask=None, attn_mask=None):
|
180 |
"""Compute multi-head self-attention.
|
|
|
181 |
Args:
|
182 |
query: input embeddings
|
183 |
key_padding_mask: 3D mask that prevents attention to certain positions
|
|
|
257 |
activation="leakyrelu",
|
258 |
relative_bias=True):
|
259 |
"""Initialization.
|
|
|
260 |
Args:
|
261 |
d_model: dimension of inputs
|
262 |
nhead: number of self-attention heads
|
|
|
287 |
|
288 |
def forward(self, src, attn_mask=None, key_padding_mask=None):
|
289 |
"""Pass the input through the encoder layer.
|
|
|
290 |
Args:
|
291 |
src: the sequence to the encoder layer (required).
|
292 |
attn_mask: the mask for the src sequence (optional).
|
|
|
302 |
|
303 |
return src3
|
304 |
|
305 |
+
|
306 |
+
|
307 |
+
class RobertaClassificationHead(nn.Module):
|
308 |
+
"""Head for sentence-level classification tasks."""
|
309 |
+
|
310 |
+
def __init__(self, config):
|
311 |
+
super().__init__()
|
312 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
313 |
+
classifier_dropout = (
|
314 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
315 |
+
)
|
316 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
317 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
318 |
+
|
319 |
+
def forward(self, features, **kwargs):
|
320 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
321 |
+
x = self.dropout(x)
|
322 |
+
x = self.dense(x)
|
323 |
+
x = torch.tanh(x)
|
324 |
+
x = self.dropout(x)
|
325 |
+
x = self.out_proj(x)
|
326 |
+
return x
|
327 |
+
|
328 |
+
|
329 |
##########################################
|
330 |
# Custom Models
|
331 |
##########################################
|
|
|
387 |
pos_emb=False,
|
388 |
pad=0):
|
389 |
"""Initialization.
|
|
|
390 |
Args:
|
391 |
hidden_size: dimension of inputs and hidden states
|
392 |
nlayers: number of layers
|
|
|
461 |
|
462 |
def forward(self, x, pos):
|
463 |
"""Pass the input through the encoder layer.
|
|
|
464 |
Args:
|
465 |
x: input tokens (required).
|
466 |
pos: position for each token (optional).
|
|
|
497 |
relations=('head', 'child'),
|
498 |
weight_act='softmax'):
|
499 |
"""Initialization.
|
|
|
500 |
Args:
|
501 |
hidden_size: dimension of inputs and hidden states
|
502 |
nlayers: number of layers
|
|
|
570 |
|
571 |
def parse(self, x, pos, embeds=None):
|
572 |
"""Parse input sentence.
|
|
|
573 |
Args:
|
574 |
x: input tokens (required).
|
575 |
pos: position for each token (optional).
|
|
|
756 |
attentions=None,
|
757 |
)
|
758 |
|
759 |
+
|
760 |
+
|
761 |
+
|
762 |
+
class StructFormerClassification(Transformer):
|
763 |
+
"""StructFormer model."""
|
764 |
+
|
765 |
+
def __init__(self,
|
766 |
+
hidden_size,
|
767 |
+
n_context_layers,
|
768 |
+
nlayers,
|
769 |
+
ntokens,
|
770 |
+
nhead=8,
|
771 |
+
dropout=0.1,
|
772 |
+
dropatt=0.1,
|
773 |
+
relative_bias=False,
|
774 |
+
pos_emb=False,
|
775 |
+
pad=0,
|
776 |
+
n_parser_layers=4,
|
777 |
+
conv_size=9,
|
778 |
+
relations=('head', 'child'),
|
779 |
+
weight_act='softmax',
|
780 |
+
config=None,
|
781 |
+
):
|
782 |
+
|
783 |
+
|
784 |
+
super(StructFormerClassification, self).__init__(
|
785 |
+
hidden_size,
|
786 |
+
nlayers,
|
787 |
+
ntokens,
|
788 |
+
nhead=nhead,
|
789 |
+
dropout=dropout,
|
790 |
+
dropatt=dropatt,
|
791 |
+
relative_bias=relative_bias,
|
792 |
+
pos_emb=pos_emb,
|
793 |
+
pad=pad)
|
794 |
+
|
795 |
+
self.num_labels = config.num_labels
|
796 |
+
self.config = config
|
797 |
+
|
798 |
+
if n_context_layers > 0:
|
799 |
+
self.context_layers = nn.ModuleList([
|
800 |
+
TransformerLayer(hidden_size, nhead, hidden_size * 4, dropout,
|
801 |
+
dropatt=dropatt, relative_bias=relative_bias)
|
802 |
+
for _ in range(n_context_layers)])
|
803 |
+
|
804 |
+
self.parser_layers = nn.ModuleList([
|
805 |
+
nn.Sequential(Conv1d(hidden_size, conv_size),
|
806 |
+
nn.LayerNorm(hidden_size, elementwise_affine=False),
|
807 |
+
nn.Tanh()) for i in range(n_parser_layers)])
|
808 |
+
|
809 |
+
self.distance_ff = nn.Sequential(
|
810 |
+
Conv1d(hidden_size, 2),
|
811 |
+
nn.LayerNorm(hidden_size, elementwise_affine=False), nn.Tanh(),
|
812 |
+
nn.Linear(hidden_size, 1))
|
813 |
+
|
814 |
+
self.height_ff = nn.Sequential(
|
815 |
+
nn.Linear(hidden_size, hidden_size),
|
816 |
+
nn.LayerNorm(hidden_size, elementwise_affine=False), nn.Tanh(),
|
817 |
+
nn.Linear(hidden_size, 1))
|
818 |
+
|
819 |
+
n_rel = len(relations)
|
820 |
+
self._rel_weight = nn.Parameter(torch.zeros((nlayers, nhead, n_rel)))
|
821 |
+
self._rel_weight.data.normal_(0, 0.1)
|
822 |
+
|
823 |
+
self._scaler = nn.Parameter(torch.zeros(2))
|
824 |
+
|
825 |
+
self.n_parse_layers = n_parser_layers
|
826 |
+
self.n_context_layers = n_context_layers
|
827 |
+
self.weight_act = weight_act
|
828 |
+
self.relations = relations
|
829 |
+
|
830 |
+
self.classifier = RobertaClassificationHead(config)
|
831 |
+
|
832 |
+
@property
|
833 |
+
def scaler(self):
|
834 |
+
return self._scaler.exp()
|
835 |
+
|
836 |
+
@property
|
837 |
+
def rel_weight(self):
|
838 |
+
if self.weight_act == 'sigmoid':
|
839 |
+
return torch.sigmoid(self._rel_weight)
|
840 |
+
elif self.weight_act == 'softmax':
|
841 |
+
return torch.softmax(self._rel_weight, dim=-1)
|
842 |
+
|
843 |
+
def parse(self, x, pos, embeds=None):
|
844 |
+
"""Parse input sentence.
|
845 |
+
Args:
|
846 |
+
x: input tokens (required).
|
847 |
+
pos: position for each token (optional).
|
848 |
+
Returns:
|
849 |
+
distance: syntactic distance
|
850 |
+
height: syntactic height
|
851 |
+
"""
|
852 |
+
|
853 |
+
mask = (x != self.pad)
|
854 |
+
mask_shifted = F.pad(mask[:, 1:], (0, 1), value=0)
|
855 |
+
|
856 |
+
|
857 |
+
if embeds is not None:
|
858 |
+
h = embeds
|
859 |
+
else:
|
860 |
+
h = self.emb(x)
|
861 |
+
|
862 |
+
for i in range(self.n_parse_layers):
|
863 |
+
h = h.masked_fill(~mask[:, :, None], 0)
|
864 |
+
h = self.parser_layers[i](h)
|
865 |
+
|
866 |
+
height = self.height_ff(h).squeeze(-1)
|
867 |
+
height.masked_fill_(~mask, -1e9)
|
868 |
+
|
869 |
+
distance = self.distance_ff(h).squeeze(-1)
|
870 |
+
distance.masked_fill_(~mask_shifted, 1e9)
|
871 |
+
|
872 |
+
# Calbrating the distance and height to the same level
|
873 |
+
length = distance.size(1)
|
874 |
+
height_max = height[:, None, :].expand(-1, length, -1)
|
875 |
+
height_max = torch.cummax(
|
876 |
+
height_max.triu(0) - torch.ones_like(height_max).tril(-1) * 1e9,
|
877 |
+
dim=-1)[0].triu(0)
|
878 |
+
|
879 |
+
margin_left = torch.relu(
|
880 |
+
F.pad(distance[:, :-1, None], (0, 0, 1, 0), value=1e9) - height_max)
|
881 |
+
margin_right = torch.relu(distance[:, None, :] - height_max)
|
882 |
+
margin = torch.where(margin_left > margin_right, margin_right,
|
883 |
+
margin_left).triu(0)
|
884 |
+
|
885 |
+
margin_mask = torch.stack([mask_shifted] + [mask] * (length - 1), dim=1)
|
886 |
+
margin.masked_fill_(~margin_mask, 0)
|
887 |
+
margin = margin.max()
|
888 |
+
|
889 |
+
distance = distance - margin
|
890 |
+
|
891 |
+
return distance, height
|
892 |
+
|
893 |
+
def compute_block(self, distance, height):
|
894 |
+
"""Compute constituents from distance and height."""
|
895 |
+
|
896 |
+
beta_logits = (distance[:, None, :] - height[:, :, None]) * self.scaler[0]
|
897 |
+
|
898 |
+
gamma = torch.sigmoid(-beta_logits)
|
899 |
+
ones = torch.ones_like(gamma)
|
900 |
+
|
901 |
+
block_mask_left = cummin(
|
902 |
+
gamma.tril(-1) + ones.triu(0), reverse=True, max_value=1)
|
903 |
+
block_mask_left = block_mask_left - F.pad(
|
904 |
+
block_mask_left[:, :, :-1], (1, 0), value=0)
|
905 |
+
block_mask_left.tril_(0)
|
906 |
+
|
907 |
+
block_mask_right = cummin(
|
908 |
+
gamma.triu(0) + ones.tril(-1), exclusive=True, max_value=1)
|
909 |
+
block_mask_right = block_mask_right - F.pad(
|
910 |
+
block_mask_right[:, :, 1:], (0, 1), value=0)
|
911 |
+
block_mask_right.triu_(0)
|
912 |
+
|
913 |
+
block_p = block_mask_left[:, :, :, None] * block_mask_right[:, :, None, :]
|
914 |
+
block = cumsum(block_mask_left).tril(0) + cumsum(
|
915 |
+
block_mask_right, reverse=True).triu(1)
|
916 |
+
|
917 |
+
return block_p, block
|
918 |
+
|
919 |
+
def compute_head(self, height):
|
920 |
+
"""Estimate head for each constituent."""
|
921 |
+
|
922 |
+
_, length = height.size()
|
923 |
+
head_logits = height * self.scaler[1]
|
924 |
+
index = torch.arange(length, device=height.device)
|
925 |
+
|
926 |
+
mask = (index[:, None, None] <= index[None, None, :]) * (
|
927 |
+
index[None, None, :] <= index[None, :, None])
|
928 |
+
head_logits = head_logits[:, None, None, :].repeat(1, length, length, 1)
|
929 |
+
head_logits.masked_fill_(~mask[None, :, :, :], -1e9)
|
930 |
+
|
931 |
+
head_p = torch.softmax(head_logits, dim=-1)
|
932 |
+
|
933 |
+
return head_p
|
934 |
+
|
935 |
+
def generate_mask(self, x, distance, height):
|
936 |
+
"""Compute head and cibling distribution for each token."""
|
937 |
+
|
938 |
+
bsz, length = x.size()
|
939 |
+
|
940 |
+
eye = torch.eye(length, device=x.device, dtype=torch.bool)
|
941 |
+
eye = eye[None, :, :].expand((bsz, -1, -1))
|
942 |
+
|
943 |
+
block_p, block = self.compute_block(distance, height)
|
944 |
+
head_p = self.compute_head(height)
|
945 |
+
head = torch.einsum('blij,bijh->blh', block_p, head_p)
|
946 |
+
head = head.masked_fill(eye, 0)
|
947 |
+
child = head.transpose(1, 2)
|
948 |
+
cibling = torch.bmm(head, child).masked_fill(eye, 0)
|
949 |
+
|
950 |
+
rel_list = []
|
951 |
+
if 'head' in self.relations:
|
952 |
+
rel_list.append(head)
|
953 |
+
if 'child' in self.relations:
|
954 |
+
rel_list.append(child)
|
955 |
+
if 'cibling' in self.relations:
|
956 |
+
rel_list.append(cibling)
|
957 |
+
|
958 |
+
rel = torch.stack(rel_list, dim=1)
|
959 |
+
|
960 |
+
rel_weight = self.rel_weight
|
961 |
+
|
962 |
+
dep = torch.einsum('lhr,brij->lbhij', rel_weight, rel)
|
963 |
+
att_mask = dep.reshape(self.nlayers, bsz * self.nhead, length, length)
|
964 |
+
|
965 |
+
return att_mask, cibling, head, block
|
966 |
+
|
967 |
+
def encode(self, x, pos, att_mask=None, context_layers=False):
|
968 |
+
"""Structformer encoding process."""
|
969 |
+
|
970 |
+
if context_layers:
|
971 |
+
"""Standard transformer encode process."""
|
972 |
+
h = self.emb(x)
|
973 |
+
if hasattr(self, 'pos_emb'):
|
974 |
+
h = h + self.pos_emb(pos)
|
975 |
+
h_list = []
|
976 |
+
visibility = self.visibility(x, x.device)
|
977 |
+
for i in range(self.n_context_layers):
|
978 |
+
h_list.append(h)
|
979 |
+
h = self.context_layers[i](
|
980 |
+
h.transpose(0, 1), key_padding_mask=visibility).transpose(0, 1)
|
981 |
+
|
982 |
+
output = h
|
983 |
+
h_array = torch.stack(h_list, dim=2)
|
984 |
+
return output
|
985 |
+
|
986 |
+
else:
|
987 |
+
visibility = self.visibility(x, x.device)
|
988 |
+
h = self.emb(x)
|
989 |
+
if hasattr(self, 'pos_emb'):
|
990 |
+
assert pos.max() < 500
|
991 |
+
h = h + self.pos_emb(pos)
|
992 |
+
for i in range(self.nlayers):
|
993 |
+
h = self.layers[i](
|
994 |
+
h.transpose(0, 1), attn_mask=att_mask[i],
|
995 |
+
key_padding_mask=visibility).transpose(0, 1)
|
996 |
+
return h
|
997 |
+
|
998 |
+
def forward(self, input_ids, labels=None, position_ids=None, **kwargs):
|
999 |
+
|
1000 |
+
x = input_ids
|
1001 |
+
batch_size, length = x.size()
|
1002 |
+
|
1003 |
+
if position_ids is None:
|
1004 |
+
pos = torch.arange(length, device=x.device).expand(batch_size, length)
|
1005 |
+
|
1006 |
+
context_layers_output = None
|
1007 |
+
if self.n_context_layers > 0:
|
1008 |
+
context_layers_output = self.encode(x, pos, context_layers=True)
|
1009 |
+
|
1010 |
+
distance, height = self.parse(x, pos, embeds=context_layers_output)
|
1011 |
+
att_mask, cibling, head, block = self.generate_mask(x, distance, height)
|
1012 |
+
|
1013 |
+
raw_output = self.encode(x, pos, att_mask)
|
1014 |
+
raw_output = self.norm(raw_output)
|
1015 |
+
raw_output = self.drop(raw_output)
|
1016 |
+
|
1017 |
+
#output = self.output_layer(raw_output)
|
1018 |
+
logits = self.classifier(raw_output)
|
1019 |
+
|
1020 |
+
loss = None
|
1021 |
+
if labels is not None:
|
1022 |
+
if self.config.problem_type is None:
|
1023 |
+
if self.num_labels == 1:
|
1024 |
+
self.config.problem_type = "regression"
|
1025 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1026 |
+
self.config.problem_type = "single_label_classification"
|
1027 |
+
else:
|
1028 |
+
self.config.problem_type = "multi_label_classification"
|
1029 |
+
|
1030 |
+
if self.config.problem_type == "regression":
|
1031 |
+
loss_fct = MSELoss()
|
1032 |
+
if self.num_labels == 1:
|
1033 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1034 |
+
else:
|
1035 |
+
loss = loss_fct(logits, labels)
|
1036 |
+
elif self.config.problem_type == "single_label_classification":
|
1037 |
+
loss_fct = CrossEntropyLoss()
|
1038 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1039 |
+
elif self.config.problem_type == "multi_label_classification":
|
1040 |
+
loss_fct = BCEWithLogitsLoss()
|
1041 |
+
loss = loss_fct(logits, labels)
|
1042 |
+
|
1043 |
+
|
1044 |
+
return SequenceClassifierOutput(
|
1045 |
+
loss=loss,
|
1046 |
+
logits=logits,
|
1047 |
+
hidden_states=None,
|
1048 |
+
attentions=None,
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
|
1052 |
+
|
1053 |
##########################################
|
1054 |
# HuggingFace Model
|
1055 |
##########################################
|
|
|
1075 |
weight_act=config.weight_act
|
1076 |
)
|
1077 |
|
1078 |
+
def forward(self, input_ids, labels=None, **kwargs):
|
1079 |
+
return self.model(input_ids, labels=labels, **kwargs)
|
1080 |
+
|
1081 |
+
|
1082 |
+
|
1083 |
+
class StructformerModelForSequenceClassification(PreTrainedModel):
|
1084 |
+
config_class = StructformerConfig
|
1085 |
+
def __init__(self, config):
|
1086 |
+
super().__init__(config)
|
1087 |
+
self.model = StructFormerClassification(
|
1088 |
+
hidden_size=config.hidden_size,
|
1089 |
+
n_context_layers=config.n_context_layers,
|
1090 |
+
nlayers=config.nlayers,
|
1091 |
+
ntokens=config.ntokens,
|
1092 |
+
nhead=config.nhead,
|
1093 |
+
dropout=config.dropout,
|
1094 |
+
dropatt=config.dropatt,
|
1095 |
+
relative_bias=config.relative_bias,
|
1096 |
+
pos_emb=config.pos_emb,
|
1097 |
+
pad=config.pad,
|
1098 |
+
n_parser_layers=config.n_parser_layers,
|
1099 |
+
conv_size=config.conv_size,
|
1100 |
+
relations=config.relations,
|
1101 |
+
weight_act=config.weight_act,
|
1102 |
+
config=config)
|
1103 |
+
|
1104 |
+
def _init_weights(self, module):
|
1105 |
+
"""Initialize the weights"""
|
1106 |
+
if isinstance(module, nn.Linear):
|
1107 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
1108 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
1109 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1110 |
+
if module.bias is not None:
|
1111 |
+
module.bias.data.zero_()
|
1112 |
+
elif isinstance(module, nn.Embedding):
|
1113 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
1114 |
+
if module.padding_idx is not None:
|
1115 |
+
module.weight.data[module.padding_idx].zero_()
|
1116 |
+
elif isinstance(module, nn.LayerNorm):
|
1117 |
+
if module.bias is not None:
|
1118 |
+
module.bias.data.zero_()
|
1119 |
+
module.weight.data.fill_(1.0)
|
1120 |
+
|
1121 |
+
|
1122 |
def forward(self, input_ids, labels=None, **kwargs):
|
1123 |
return self.model(input_ids, labels=labels, **kwargs)
|