omegaodin commited on
Commit
6877598
·
verified ·
1 Parent(s): ad76640

End of training

Browse files
Files changed (1) hide show
  1. README.md +84 -75
README.md CHANGED
@@ -1,75 +1,84 @@
1
- ---
2
- datasets:
3
- - yelp_review_full
4
- license: apache-2.0
5
- metrics:
6
- - accuracy
7
- tags:
8
- - generated_from_trainer
9
- model-index:
10
- - name: mi-super-modelo
11
- results:
12
- - task:
13
- type: text-classification
14
- name: Text Classification
15
- dataset:
16
- name: yelp_review_full
17
- type: yelp_review_full
18
- config: yelp_review_full
19
- split: test
20
- args: yelp_review_full
21
- metrics:
22
- - type: accuracy
23
- value: 0.225
24
- name: Accuracy
25
- ---
26
-
27
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
- should probably proofread and complete it, then remove this comment. -->
29
-
30
- # mi-super-modelo
31
-
32
- This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset.
33
- It achieves the following results on the evaluation set:
34
- - Loss: 1.6404
35
- - Accuracy: 0.225
36
-
37
- ## Model description
38
-
39
- More information needed
40
-
41
- ## Intended uses & limitations
42
-
43
- More information needed
44
-
45
- ## Training and evaluation data
46
-
47
- More information needed
48
-
49
- ## Training procedure
50
-
51
- ### Training hyperparameters
52
-
53
- The following hyperparameters were used during training:
54
- - learning_rate: 5e-05
55
- - train_batch_size: 8
56
- - eval_batch_size: 8
57
- - seed: 42
58
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
- - lr_scheduler_type: linear
60
- - num_epochs: 1
61
-
62
- ### Training results
63
-
64
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
- | 1.7058 | 0.5 | 5 | 1.7046 | 0.225 |
67
- | 1.6208 | 1.0 | 10 | 1.6404 | 0.225 |
68
-
69
-
70
- ### Framework versions
71
-
72
- - Transformers 4.30.2
73
- - Pytorch 2.0.1+cu118
74
- - Datasets 2.13.1
75
- - Tokenizers 0.13.3
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: mi-super-modelo
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # mi-super-modelo
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.3218
21
+ - Accuracy: 0.87
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 1
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.7166 | 0.04 | 5 | 0.6899 | 0.5 |
53
+ | 0.6804 | 0.08 | 10 | 0.6806 | 0.505 |
54
+ | 0.6756 | 0.12 | 15 | 0.6625 | 0.565 |
55
+ | 0.6527 | 0.16 | 20 | 0.6229 | 0.67 |
56
+ | 0.6245 | 0.2 | 25 | 0.6537 | 0.585 |
57
+ | 0.6079 | 0.24 | 30 | 0.5368 | 0.76 |
58
+ | 0.5977 | 0.28 | 35 | 0.4603 | 0.83 |
59
+ | 0.3683 | 0.32 | 40 | 0.5971 | 0.71 |
60
+ | 0.3948 | 0.36 | 45 | 0.4346 | 0.815 |
61
+ | 0.4459 | 0.4 | 50 | 0.4177 | 0.81 |
62
+ | 0.5583 | 0.44 | 55 | 0.3364 | 0.855 |
63
+ | 0.5495 | 0.48 | 60 | 0.3367 | 0.865 |
64
+ | 0.1608 | 0.52 | 65 | 0.3992 | 0.825 |
65
+ | 0.4232 | 0.56 | 70 | 0.3484 | 0.835 |
66
+ | 0.6385 | 0.6 | 75 | 0.3930 | 0.86 |
67
+ | 0.2918 | 0.64 | 80 | 0.3389 | 0.86 |
68
+ | 0.2137 | 0.68 | 85 | 0.3272 | 0.865 |
69
+ | 0.419 | 0.72 | 90 | 0.3188 | 0.885 |
70
+ | 0.2032 | 0.76 | 95 | 0.3158 | 0.87 |
71
+ | 0.226 | 0.8 | 100 | 0.3204 | 0.87 |
72
+ | 0.2525 | 0.84 | 105 | 0.3398 | 0.83 |
73
+ | 0.2573 | 0.88 | 110 | 0.3494 | 0.85 |
74
+ | 0.3895 | 0.92 | 115 | 0.3368 | 0.835 |
75
+ | 0.2776 | 0.96 | 120 | 0.3241 | 0.87 |
76
+ | 0.2487 | 1.0 | 125 | 0.3218 | 0.87 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.44.2
82
+ - Pytorch 2.4.1+cpu
83
+ - Datasets 2.21.0
84
+ - Tokenizers 0.19.1