End of training
Browse files
README.md
CHANGED
@@ -1,75 +1,84 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
65 |
-
|
66 |
-
|
|
67 |
-
|
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: mi-super-modelo
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mi-super-modelo
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3218
|
21 |
+
- Accuracy: 0.87
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 1
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 0.7166 | 0.04 | 5 | 0.6899 | 0.5 |
|
53 |
+
| 0.6804 | 0.08 | 10 | 0.6806 | 0.505 |
|
54 |
+
| 0.6756 | 0.12 | 15 | 0.6625 | 0.565 |
|
55 |
+
| 0.6527 | 0.16 | 20 | 0.6229 | 0.67 |
|
56 |
+
| 0.6245 | 0.2 | 25 | 0.6537 | 0.585 |
|
57 |
+
| 0.6079 | 0.24 | 30 | 0.5368 | 0.76 |
|
58 |
+
| 0.5977 | 0.28 | 35 | 0.4603 | 0.83 |
|
59 |
+
| 0.3683 | 0.32 | 40 | 0.5971 | 0.71 |
|
60 |
+
| 0.3948 | 0.36 | 45 | 0.4346 | 0.815 |
|
61 |
+
| 0.4459 | 0.4 | 50 | 0.4177 | 0.81 |
|
62 |
+
| 0.5583 | 0.44 | 55 | 0.3364 | 0.855 |
|
63 |
+
| 0.5495 | 0.48 | 60 | 0.3367 | 0.865 |
|
64 |
+
| 0.1608 | 0.52 | 65 | 0.3992 | 0.825 |
|
65 |
+
| 0.4232 | 0.56 | 70 | 0.3484 | 0.835 |
|
66 |
+
| 0.6385 | 0.6 | 75 | 0.3930 | 0.86 |
|
67 |
+
| 0.2918 | 0.64 | 80 | 0.3389 | 0.86 |
|
68 |
+
| 0.2137 | 0.68 | 85 | 0.3272 | 0.865 |
|
69 |
+
| 0.419 | 0.72 | 90 | 0.3188 | 0.885 |
|
70 |
+
| 0.2032 | 0.76 | 95 | 0.3158 | 0.87 |
|
71 |
+
| 0.226 | 0.8 | 100 | 0.3204 | 0.87 |
|
72 |
+
| 0.2525 | 0.84 | 105 | 0.3398 | 0.83 |
|
73 |
+
| 0.2573 | 0.88 | 110 | 0.3494 | 0.85 |
|
74 |
+
| 0.3895 | 0.92 | 115 | 0.3368 | 0.835 |
|
75 |
+
| 0.2776 | 0.96 | 120 | 0.3241 | 0.87 |
|
76 |
+
| 0.2487 | 1.0 | 125 | 0.3218 | 0.87 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.44.2
|
82 |
+
- Pytorch 2.4.1+cpu
|
83 |
+
- Datasets 2.21.0
|
84 |
+
- Tokenizers 0.19.1
|