--- license: apache-2.0 tags: - video LLM --- # Tarsier Model Card ## Model details **Model type:** Tarsier-34b is an open-source large-scale video-language models, which is designed to generate high-quality video descriptions, together with good capability of general video understanding (SOTA results on 6 open benchmarks). **Model date:** Tarsier-34b was trained in June 2024. **Paper or resources for more information:** - github repo: https://github.com/bytedance/tarsier - paper link: https://arxiv.org/abs/2407.00634 ## License NousResearch/Nous-Hermes-2-Yi-34B license. **Where to send questions or comments about the model:** https://github.com/bytedance/tarsier/issues ## Intended use **Primary intended uses:** The primary use of Tarsier is research on large multimodal models, especially video description. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset Tarsier tasks a two-stage training strategy. - Stage-1: Multi-task Pre-training on 13M data - Stage-2: Multi-grained Instruction Tuning on 500K data In both stages, we freeze ViT and train all the parameters of projection layer and LLM. ## Evaluation dataset - A challenging video desription dataset: [DREAM-1K](https://huggingface.co/datasets/omni-research/DREAM-1K) - Multi-choice VQA: [MVBench](https://huggingface.co/datasets/OpenGVLab/MVBench), [NeXT-QA](https://github.com/doc-doc/NExT-QA) and [Egoschema](https://drive.google.com/drive/folders/1SS0VVz8rML1e5gWq7D7VtP1oxE2UtmhQ) - Open-ended VQA: [MSVD-QA](https://opendatalab.com/OpenDataLab/MSVD), [MSR-VTT-QA](https://opendatalab.com/OpenDataLab/MSR-VTT), [ActivityNet-QA](https://github.com/MILVLG/activitynet-qa) and [TGIF-QA](https://opendatalab.com/OpenDataLab/TGIF-QA) - Video Caption: [MSVD-Caption](https://opendatalab.com/OpenDataLab/MSVD), [MSRVTT-Caption](https://opendatalab.com/OpenDataLab/MSR-VTT), [VATEX](https://eric-xw.github.io/vatex-website/about.html) ## How to Use see https://github.com/bytedance/tarsier?tab=readme-ov-file#usage