ongkn commited on
Commit
84a62f1
·
unverified ·
1 Parent(s): 671cec9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -1
README.md CHANGED
@@ -5,9 +5,24 @@ tags:
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
 
 
8
  model-index:
9
  - name: attraction-classifier
10
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,6 +31,9 @@ should probably proofread and complete it, then remove this comment. -->
16
  # attraction-classifier
17
 
18
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
 
 
 
19
 
20
  ## Model description
21
 
@@ -45,6 +63,22 @@ The following hyperparameters were used during training:
45
  - lr_scheduler_warmup_ratio: 0.1
46
  - num_epochs: 10
47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  ### Framework versions
49
 
50
  - Transformers 4.31.0
 
5
  - generated_from_trainer
6
  datasets:
7
  - imagefolder
8
+ metrics:
9
+ - accuracy
10
  model-index:
11
  - name: attraction-classifier
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: smtn_girls_likeOrNot
20
+ split: train
21
+ args: smtn_girls_likeOrNot
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.8284457478005866
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
  # attraction-classifier
32
 
33
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.4361
36
+ - Accuracy: 0.8284
37
 
38
  ## Model description
39
 
 
63
  - lr_scheduler_warmup_ratio: 0.1
64
  - num_epochs: 10
65
 
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 0.6014 | 0.98 | 42 | 0.5286 | 0.7507 |
71
+ | 0.4479 | 1.99 | 85 | 0.4547 | 0.8094 |
72
+ | 0.3988 | 2.99 | 128 | 0.4259 | 0.8284 |
73
+ | 0.3773 | 4.0 | 171 | 0.4475 | 0.7962 |
74
+ | 0.3217 | 4.98 | 213 | 0.4155 | 0.8226 |
75
+ | 0.2844 | 5.99 | 256 | 0.4423 | 0.8065 |
76
+ | 0.2519 | 6.99 | 299 | 0.4961 | 0.8065 |
77
+ | 0.2527 | 8.0 | 342 | 0.4642 | 0.8123 |
78
+ | 0.2165 | 8.98 | 384 | 0.4860 | 0.8050 |
79
+ | 0.2323 | 9.82 | 420 | 0.4361 | 0.8284 |
80
+
81
+
82
  ### Framework versions
83
 
84
  - Transformers 4.31.0