--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: attraction-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7838983050847458 --- # attraction-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5662 - Accuracy: 0.7839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 69 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5293 | 1.13 | 150 | 0.5251 | 0.75 | | 0.438 | 2.26 | 300 | 0.4974 | 0.7331 | | 0.3452 | 3.38 | 450 | 0.4794 | 0.7881 | | 0.3431 | 4.51 | 600 | 0.4787 | 0.7945 | | 0.264 | 5.64 | 750 | 0.4994 | 0.7775 | | 0.2361 | 6.77 | 900 | 0.5140 | 0.8114 | | 0.2028 | 7.89 | 1050 | 0.6601 | 0.7627 | | 0.2174 | 9.02 | 1200 | 0.5546 | 0.7818 | | 0.1922 | 10.15 | 1350 | 0.5662 | 0.7839 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0