End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 1.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -59,17 +59,22 @@ The following hyperparameters were used during training:
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
-
- num_epochs:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
|
75 |
### Framework versions
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.8392614716263915
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.7950
|
36 |
+
- Accuracy: 0.8393
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_ratio: 0.1
|
62 |
+
- num_epochs: 10
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 0.3585 | 1.0 | 924 | 0.4347 | 0.8249 |
|
69 |
+
| 0.3184 | 2.0 | 1848 | 0.4237 | 0.8317 |
|
70 |
+
| 0.2047 | 3.0 | 2772 | 0.5136 | 0.8355 |
|
71 |
+
| 0.1174 | 4.0 | 3696 | 0.8121 | 0.8292 |
|
72 |
+
| 0.0516 | 5.0 | 4620 | 1.1429 | 0.8390 |
|
73 |
+
| 0.0132 | 6.0 | 5544 | 1.4356 | 0.8308 |
|
74 |
+
| 0.0382 | 7.0 | 6468 | 1.5435 | 0.8360 |
|
75 |
+
| 0.0 | 8.0 | 7392 | 1.7607 | 0.8355 |
|
76 |
+
| 0.0016 | 9.0 | 8316 | 1.7775 | 0.8376 |
|
77 |
+
| 0.0 | 10.0 | 9240 | 1.7950 | 0.8393 |
|
78 |
|
79 |
|
80 |
### Framework versions
|