--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5611608353675075 --- # Boya1_Adamax_1-e4_20Epoch_Deit-tiny-patch16_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.4928 - Accuracy: 0.5612 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.3998 | 1.0 | 924 | 1.5149 | 0.4893 | | 1.3931 | 2.0 | 1848 | 1.3087 | 0.5424 | | 1.0339 | 3.0 | 2772 | 1.2795 | 0.5598 | | 0.6895 | 4.0 | 3696 | 1.2909 | 0.5772 | | 0.5865 | 5.0 | 4620 | 1.4017 | 0.5644 | | 0.6353 | 6.0 | 5544 | 1.5191 | 0.5606 | | 0.4014 | 7.0 | 6468 | 1.6877 | 0.5644 | | 0.2889 | 8.0 | 7392 | 1.9030 | 0.5601 | | 0.064 | 9.0 | 8316 | 2.0982 | 0.5633 | | 0.0342 | 10.0 | 9240 | 2.4199 | 0.5574 | | 0.071 | 11.0 | 10164 | 2.6790 | 0.5555 | | 0.0036 | 12.0 | 11088 | 2.8221 | 0.5571 | | 0.0018 | 13.0 | 12012 | 3.0343 | 0.5609 | | 0.0019 | 14.0 | 12936 | 3.1489 | 0.5566 | | 0.0004 | 15.0 | 13860 | 3.2320 | 0.5579 | | 0.0248 | 16.0 | 14784 | 3.2970 | 0.5595 | | 0.0003 | 17.0 | 15708 | 3.3641 | 0.5625 | | 0.0002 | 18.0 | 16632 | 3.4302 | 0.5606 | | 0.0002 | 19.0 | 17556 | 3.4763 | 0.5620 | | 0.0001 | 20.0 | 18480 | 3.4928 | 0.5612 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.0 - Datasets 2.19.0 - Tokenizers 0.19.1