--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.6552845528455284 --- # Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold4 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 3.1034 - Accuracy: 0.6553 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1966 | 1.0 | 923 | 1.1276 | 0.5995 | | 1.0326 | 2.0 | 1846 | 1.0374 | 0.6360 | | 0.6666 | 3.0 | 2769 | 1.0904 | 0.6415 | | 0.4288 | 4.0 | 3692 | 1.2437 | 0.6474 | | 0.2209 | 5.0 | 4615 | 1.4346 | 0.6404 | | 0.1143 | 6.0 | 5538 | 1.6952 | 0.6442 | | 0.1733 | 7.0 | 6461 | 1.9268 | 0.6547 | | 0.0409 | 8.0 | 7384 | 2.2016 | 0.6518 | | 0.0999 | 9.0 | 8307 | 2.4623 | 0.6485 | | 0.0104 | 10.0 | 9230 | 2.6094 | 0.6534 | | 0.0424 | 11.0 | 10153 | 2.7340 | 0.6558 | | 0.0463 | 12.0 | 11076 | 2.8098 | 0.6599 | | 0.0005 | 13.0 | 11999 | 2.9333 | 0.6553 | | 0.0144 | 14.0 | 12922 | 2.9705 | 0.6531 | | 0.0002 | 15.0 | 13845 | 3.0020 | 0.6566 | | 0.0157 | 16.0 | 14768 | 3.0642 | 0.6588 | | 0.0005 | 17.0 | 15691 | 3.0529 | 0.6575 | | 0.0029 | 18.0 | 16614 | 3.0952 | 0.6558 | | 0.0024 | 19.0 | 17537 | 3.0982 | 0.6572 | | 0.0001 | 20.0 | 18460 | 3.1034 | 0.6553 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1