File size: 3,159 Bytes
3aaff0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec2e54
3aaff0a
 
 
 
 
 
 
 
 
eec2e54
 
3aaff0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eec2e54
3aaff0a
 
 
eec2e54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3aaff0a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---

license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6201466196035841
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-large-patch16_fold1

This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 3.7539
- Accuracy: 0.6201

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 16

- eval_batch_size: 16

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20



### Training results



| Training Loss | Epoch | Step  | Validation Loss | Accuracy |

|:-------------:|:-----:|:-----:|:---------------:|:--------:|

| 1.3484        | 1.0   | 924   | 1.3605          | 0.5327   |

| 1.1536        | 2.0   | 1848  | 1.2783          | 0.5515   |

| 1.1327        | 3.0   | 2772  | 1.1624          | 0.6071   |

| 0.7516        | 4.0   | 3696  | 1.2618          | 0.5952   |

| 0.5923        | 5.0   | 4620  | 1.4123          | 0.6022   |

| 0.5275        | 6.0   | 5544  | 1.5876          | 0.5927   |

| 0.3529        | 7.0   | 6468  | 1.7994          | 0.5887   |

| 0.2628        | 8.0   | 7392  | 1.9375          | 0.5984   |

| 0.2774        | 9.0   | 8316  | 2.3876          | 0.5889   |

| 0.1651        | 10.0  | 9240  | 2.6650          | 0.5873   |

| 0.1728        | 11.0  | 10164 | 2.8556          | 0.5867   |

| 0.028         | 12.0  | 11088 | 3.0398          | 0.6003   |

| 0.0023        | 13.0  | 12012 | 3.3114          | 0.6044   |

| 0.0042        | 14.0  | 12936 | 3.3149          | 0.6082   |

| 0.0192        | 15.0  | 13860 | 3.4661          | 0.6028   |

| 0.0004        | 16.0  | 14784 | 3.5853          | 0.6058   |

| 0.0363        | 17.0  | 15708 | 3.5853          | 0.6144   |

| 0.0           | 18.0  | 16632 | 3.7544          | 0.6123   |

| 0.002         | 19.0  | 17556 | 3.7503          | 0.6155   |

| 0.0           | 20.0  | 18480 | 3.7539          | 0.6201   |





### Framework versions



- Transformers 4.35.0

- Pytorch 2.1.0

- Datasets 2.14.6

- Tokenizers 0.14.1