--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_SGD_1-e3_20Epoch_09Momentum_Beit-base-patch16_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4291125541125541 --- # Boya1_SGD_1-e3_20Epoch_09Momentum_Beit-base-patch16_fold3 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7764 - Accuracy: 0.4291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.4699 | 1.0 | 923 | 2.4335 | 0.2140 | | 2.3722 | 2.0 | 1846 | 2.2936 | 0.2643 | | 2.248 | 3.0 | 2769 | 2.1974 | 0.2884 | | 2.1383 | 4.0 | 3692 | 2.1137 | 0.3217 | | 2.0587 | 5.0 | 4615 | 2.0507 | 0.3404 | | 2.0732 | 6.0 | 5538 | 2.0041 | 0.3501 | | 2.0202 | 7.0 | 6461 | 1.9644 | 0.3693 | | 2.0361 | 8.0 | 7384 | 1.9326 | 0.3764 | | 1.9433 | 9.0 | 8307 | 1.8973 | 0.3926 | | 1.9102 | 10.0 | 9230 | 1.8743 | 0.3877 | | 1.9324 | 11.0 | 10153 | 1.8539 | 0.3950 | | 1.943 | 12.0 | 11076 | 1.8379 | 0.4061 | | 1.8903 | 13.0 | 11999 | 1.8194 | 0.4113 | | 1.8833 | 14.0 | 12922 | 1.8092 | 0.4172 | | 1.8296 | 15.0 | 13845 | 1.8007 | 0.4205 | | 1.8152 | 16.0 | 14768 | 1.7910 | 0.4256 | | 2.0261 | 17.0 | 15691 | 1.7844 | 0.4283 | | 1.8132 | 18.0 | 16614 | 1.7806 | 0.4283 | | 1.8172 | 19.0 | 17537 | 1.7782 | 0.4294 | | 1.867 | 20.0 | 18460 | 1.7764 | 0.4291 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1