onizukal commited on
Commit
73a7091
1 Parent(s): 2830c11

End of training

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/deit-tiny-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold1
12
+ results:
13
+ - task:
14
+ name: Image Classification
15
+ type: image-classification
16
+ dataset:
17
+ name: imagefolder
18
+ type: imagefolder
19
+ config: default
20
+ split: test
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.3950583763236492
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold1
32
+
33
+ This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.8160
36
+ - Accuracy: 0.3951
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 0.001
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 20
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
68
+ | 2.4438 | 1.0 | 924 | 2.4927 | 0.1898 |
69
+ | 2.3969 | 2.0 | 1848 | 2.3384 | 0.2389 |
70
+ | 2.2609 | 3.0 | 2772 | 2.2168 | 0.2878 |
71
+ | 2.0421 | 4.0 | 3696 | 2.1285 | 0.3068 |
72
+ | 2.0227 | 5.0 | 4620 | 2.0634 | 0.3296 |
73
+ | 1.99 | 6.0 | 5544 | 2.0084 | 0.3397 |
74
+ | 1.9954 | 7.0 | 6468 | 1.9664 | 0.3549 |
75
+ | 2.0727 | 8.0 | 7392 | 1.9354 | 0.3652 |
76
+ | 2.0158 | 9.0 | 8316 | 1.9072 | 0.3704 |
77
+ | 1.8488 | 10.0 | 9240 | 1.8880 | 0.3750 |
78
+ | 1.8985 | 11.0 | 10164 | 1.8721 | 0.3790 |
79
+ | 1.7309 | 12.0 | 11088 | 1.8576 | 0.3812 |
80
+ | 1.8129 | 13.0 | 12012 | 1.8465 | 0.3899 |
81
+ | 1.7599 | 14.0 | 12936 | 1.8384 | 0.3866 |
82
+ | 1.7902 | 15.0 | 13860 | 1.8309 | 0.3894 |
83
+ | 1.7502 | 16.0 | 14784 | 1.8250 | 0.3932 |
84
+ | 1.7034 | 17.0 | 15708 | 1.8221 | 0.3934 |
85
+ | 1.8587 | 18.0 | 16632 | 1.8187 | 0.3940 |
86
+ | 1.8137 | 19.0 | 17556 | 1.8165 | 0.3942 |
87
+ | 1.9039 | 20.0 | 18480 | 1.8160 | 0.3951 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.40.1
93
+ - Pytorch 2.1.0
94
+ - Datasets 2.19.0
95
+ - Tokenizers 0.19.1