--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.42384823848238484 --- # Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7238 - Accuracy: 0.4238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.4152 | 1.0 | 923 | 2.4593 | 0.2073 | | 2.4387 | 2.0 | 1846 | 2.2993 | 0.2512 | | 2.1969 | 3.0 | 2769 | 2.1607 | 0.3133 | | 2.0455 | 4.0 | 3692 | 2.0589 | 0.3320 | | 1.8171 | 5.0 | 4615 | 1.9845 | 0.3585 | | 1.8796 | 6.0 | 5538 | 1.9302 | 0.3656 | | 1.8281 | 7.0 | 6461 | 1.8840 | 0.3816 | | 1.7455 | 8.0 | 7384 | 1.8500 | 0.3883 | | 1.7072 | 9.0 | 8307 | 1.8232 | 0.4003 | | 1.7401 | 10.0 | 9230 | 1.8005 | 0.4046 | | 1.8157 | 11.0 | 10153 | 1.7845 | 0.4114 | | 1.796 | 12.0 | 11076 | 1.7690 | 0.4114 | | 1.7335 | 13.0 | 11999 | 1.7588 | 0.4122 | | 1.6292 | 14.0 | 12922 | 1.7473 | 0.4190 | | 1.7133 | 15.0 | 13845 | 1.7397 | 0.4222 | | 1.7521 | 16.0 | 14768 | 1.7345 | 0.4195 | | 1.8322 | 17.0 | 15691 | 1.7291 | 0.4244 | | 1.7763 | 18.0 | 16614 | 1.7260 | 0.4244 | | 1.5996 | 19.0 | 17537 | 1.7248 | 0.4225 | | 1.6259 | 20.0 | 18460 | 1.7238 | 0.4238 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.1.0 - Datasets 2.19.0 - Tokenizers 0.19.1