--- license: apache-2.0 base_model: microsoft/swin-large-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya1_SGD_1e3_20Epoch_Swin-large-224_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.38054054054054054 --- # Boya1_SGD_1e3_20Epoch_Swin-large-224_fold2 This model is a fine-tuned version of [microsoft/swin-large-patch4-window7-224](https://huggingface.co/microsoft/swin-large-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0270 - Accuracy: 0.3805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.4749 | 1.0 | 923 | 2.5397 | 0.1935 | | 2.4343 | 2.0 | 1846 | 2.4492 | 0.1943 | | 2.4893 | 3.0 | 2769 | 2.3908 | 0.1997 | | 2.355 | 4.0 | 3692 | 2.3485 | 0.2208 | | 2.2183 | 5.0 | 4615 | 2.3215 | 0.2484 | | 2.2553 | 6.0 | 5538 | 2.2854 | 0.2741 | | 2.2168 | 7.0 | 6461 | 2.2456 | 0.2970 | | 2.2632 | 8.0 | 7384 | 2.2147 | 0.3143 | | 2.1811 | 9.0 | 8307 | 2.1785 | 0.33 | | 2.1273 | 10.0 | 9230 | 2.1568 | 0.3373 | | 2.055 | 11.0 | 10153 | 2.1247 | 0.3449 | | 2.0484 | 12.0 | 11076 | 2.1086 | 0.3549 | | 2.0352 | 13.0 | 11999 | 2.0861 | 0.3638 | | 2.0495 | 14.0 | 12922 | 2.0733 | 0.3646 | | 2.094 | 15.0 | 13845 | 2.0546 | 0.3705 | | 2.0506 | 16.0 | 14768 | 2.0465 | 0.3759 | | 1.9902 | 17.0 | 15691 | 2.0401 | 0.3773 | | 1.9714 | 18.0 | 16614 | 2.0324 | 0.3792 | | 1.967 | 19.0 | 17537 | 2.0279 | 0.3808 | | 2.1255 | 20.0 | 18460 | 2.0270 | 0.3805 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.21.0 - Tokenizers 0.13.2