File size: 3,022 Bytes
54a40c9
 
aa5261d
54a40c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5261d
54a40c9
 
 
 
 
 
 
aa5261d
54a40c9
aa5261d
 
54a40c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa5261d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54a40c9
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
base_model: microsoft/swin-large-patch4-window12-384
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.47160493827160493
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Boya2_SGD_1e3_20Epoch_Swin-large-224_fold1

This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384](https://huggingface.co/microsoft/swin-large-patch4-window12-384) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6332
- Accuracy: 0.4716

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.4897        | 1.0   | 914   | 2.4409          | 0.2804   |
| 2.1506        | 2.0   | 1828  | 2.2233          | 0.2968   |
| 2.0176        | 3.0   | 2742  | 2.1001          | 0.3311   |
| 1.9799        | 4.0   | 3656  | 2.0112          | 0.3564   |
| 1.9403        | 5.0   | 4570  | 1.9459          | 0.3786   |
| 1.9907        | 6.0   | 5484  | 1.8909          | 0.4003   |
| 1.7985        | 7.0   | 6398  | 1.8449          | 0.4159   |
| 1.8712        | 8.0   | 7312  | 1.8057          | 0.4239   |
| 1.7195        | 9.0   | 8226  | 1.7733          | 0.4348   |
| 1.8526        | 10.0  | 9140  | 1.7458          | 0.4436   |
| 1.67          | 11.0  | 10054 | 1.7203          | 0.4488   |
| 1.6061        | 12.0  | 10968 | 1.7023          | 0.4549   |
| 1.6256        | 13.0  | 11882 | 1.6832          | 0.4582   |
| 1.8212        | 14.0  | 12796 | 1.6685          | 0.4634   |
| 1.7157        | 15.0  | 13710 | 1.6584          | 0.4639   |
| 1.6148        | 16.0  | 14624 | 1.6491          | 0.4661   |
| 1.7158        | 17.0  | 15538 | 1.6424          | 0.4675   |
| 1.7391        | 18.0  | 16452 | 1.6370          | 0.4689   |
| 1.8077        | 19.0  | 17366 | 1.6337          | 0.4716   |
| 1.7769        | 20.0  | 18280 | 1.6332          | 0.4716   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.21.0
- Tokenizers 0.13.2