--- license: apache-2.0 base_model: microsoft/swin-large-patch4-window12-384 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya2_SGD_1e3_20Epoch_Swin-large-224_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.47160493827160493 --- # Boya2_SGD_1e3_20Epoch_Swin-large-224_fold1 This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384](https://huggingface.co/microsoft/swin-large-patch4-window12-384) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6332 - Accuracy: 0.4716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.4897 | 1.0 | 914 | 2.4409 | 0.2804 | | 2.1506 | 2.0 | 1828 | 2.2233 | 0.2968 | | 2.0176 | 3.0 | 2742 | 2.1001 | 0.3311 | | 1.9799 | 4.0 | 3656 | 2.0112 | 0.3564 | | 1.9403 | 5.0 | 4570 | 1.9459 | 0.3786 | | 1.9907 | 6.0 | 5484 | 1.8909 | 0.4003 | | 1.7985 | 7.0 | 6398 | 1.8449 | 0.4159 | | 1.8712 | 8.0 | 7312 | 1.8057 | 0.4239 | | 1.7195 | 9.0 | 8226 | 1.7733 | 0.4348 | | 1.8526 | 10.0 | 9140 | 1.7458 | 0.4436 | | 1.67 | 11.0 | 10054 | 1.7203 | 0.4488 | | 1.6061 | 12.0 | 10968 | 1.7023 | 0.4549 | | 1.6256 | 13.0 | 11882 | 1.6832 | 0.4582 | | 1.8212 | 14.0 | 12796 | 1.6685 | 0.4634 | | 1.7157 | 15.0 | 13710 | 1.6584 | 0.4639 | | 1.6148 | 16.0 | 14624 | 1.6491 | 0.4661 | | 1.7158 | 17.0 | 15538 | 1.6424 | 0.4675 | | 1.7391 | 18.0 | 16452 | 1.6370 | 0.4689 | | 1.8077 | 19.0 | 17366 | 1.6337 | 0.4716 | | 1.7769 | 20.0 | 18280 | 1.6332 | 0.4716 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.21.0 - Tokenizers 0.13.2