File size: 3,031 Bytes
84c3a57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
base_model: microsoft/swin-large-patch4-window12-384-in22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya3_SGD_1e3_20Epoch_Swin-large_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.4023809523809524
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Boya3_SGD_1e3_20Epoch_Swin-large_fold1
This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384-in22k](https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8852
- Accuracy: 0.4024
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.6532 | 1.0 | 632 | 2.5742 | 0.2512 |
| 2.3757 | 2.0 | 1264 | 2.3681 | 0.2865 |
| 2.2527 | 3.0 | 1896 | 2.2467 | 0.3060 |
| 2.2221 | 4.0 | 2528 | 2.1715 | 0.3179 |
| 2.1297 | 5.0 | 3160 | 2.1100 | 0.3230 |
| 2.068 | 6.0 | 3792 | 2.0715 | 0.3456 |
| 1.9695 | 7.0 | 4424 | 2.0381 | 0.3444 |
| 2.1086 | 8.0 | 5056 | 2.0071 | 0.3635 |
| 2.093 | 9.0 | 5688 | 1.9854 | 0.3651 |
| 2.05 | 10.0 | 6320 | 1.9645 | 0.3710 |
| 2.0434 | 11.0 | 6952 | 1.9480 | 0.3786 |
| 2.0666 | 12.0 | 7584 | 1.9363 | 0.3817 |
| 1.846 | 13.0 | 8216 | 1.9201 | 0.3889 |
| 1.9809 | 14.0 | 8848 | 1.9124 | 0.3897 |
| 1.844 | 15.0 | 9480 | 1.9027 | 0.3948 |
| 1.9048 | 16.0 | 10112 | 1.8971 | 0.3948 |
| 2.0342 | 17.0 | 10744 | 1.8912 | 0.4 |
| 1.822 | 18.0 | 11376 | 1.8876 | 0.4008 |
| 1.8676 | 19.0 | 12008 | 1.8858 | 0.4024 |
| 1.9147 | 20.0 | 12640 | 1.8852 | 0.4024 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.21.0
- Tokenizers 0.13.2
|