File size: 3,031 Bytes
84c3a57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: apache-2.0
base_model: microsoft/swin-large-patch4-window12-384-in22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya3_SGD_1e3_20Epoch_Swin-large_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.4023809523809524
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Boya3_SGD_1e3_20Epoch_Swin-large_fold1

This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384-in22k](https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8852
- Accuracy: 0.4024

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.6532        | 1.0   | 632   | 2.5742          | 0.2512   |
| 2.3757        | 2.0   | 1264  | 2.3681          | 0.2865   |
| 2.2527        | 3.0   | 1896  | 2.2467          | 0.3060   |
| 2.2221        | 4.0   | 2528  | 2.1715          | 0.3179   |
| 2.1297        | 5.0   | 3160  | 2.1100          | 0.3230   |
| 2.068         | 6.0   | 3792  | 2.0715          | 0.3456   |
| 1.9695        | 7.0   | 4424  | 2.0381          | 0.3444   |
| 2.1086        | 8.0   | 5056  | 2.0071          | 0.3635   |
| 2.093         | 9.0   | 5688  | 1.9854          | 0.3651   |
| 2.05          | 10.0  | 6320  | 1.9645          | 0.3710   |
| 2.0434        | 11.0  | 6952  | 1.9480          | 0.3786   |
| 2.0666        | 12.0  | 7584  | 1.9363          | 0.3817   |
| 1.846         | 13.0  | 8216  | 1.9201          | 0.3889   |
| 1.9809        | 14.0  | 8848  | 1.9124          | 0.3897   |
| 1.844         | 15.0  | 9480  | 1.9027          | 0.3948   |
| 1.9048        | 16.0  | 10112 | 1.8971          | 0.3948   |
| 2.0342        | 17.0  | 10744 | 1.8912          | 0.4      |
| 1.822         | 18.0  | 11376 | 1.8876          | 0.4008   |
| 1.8676        | 19.0  | 12008 | 1.8858          | 0.4024   |
| 1.9147        | 20.0  | 12640 | 1.8852          | 0.4024   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.21.0
- Tokenizers 0.13.2