--- license: apache-2.0 base_model: microsoft/swin-large-patch4-window12-384-in22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: Boya3_SGD_1e3_20Epoch_Swin-large_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.4023809523809524 --- # Boya3_SGD_1e3_20Epoch_Swin-large_fold1 This model is a fine-tuned version of [microsoft/swin-large-patch4-window12-384-in22k](https://huggingface.co/microsoft/swin-large-patch4-window12-384-in22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.8852 - Accuracy: 0.4024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 2.6532 | 1.0 | 632 | 2.5742 | 0.2512 | | 2.3757 | 2.0 | 1264 | 2.3681 | 0.2865 | | 2.2527 | 3.0 | 1896 | 2.2467 | 0.3060 | | 2.2221 | 4.0 | 2528 | 2.1715 | 0.3179 | | 2.1297 | 5.0 | 3160 | 2.1100 | 0.3230 | | 2.068 | 6.0 | 3792 | 2.0715 | 0.3456 | | 1.9695 | 7.0 | 4424 | 2.0381 | 0.3444 | | 2.1086 | 8.0 | 5056 | 2.0071 | 0.3635 | | 2.093 | 9.0 | 5688 | 1.9854 | 0.3651 | | 2.05 | 10.0 | 6320 | 1.9645 | 0.3710 | | 2.0434 | 11.0 | 6952 | 1.9480 | 0.3786 | | 2.0666 | 12.0 | 7584 | 1.9363 | 0.3817 | | 1.846 | 13.0 | 8216 | 1.9201 | 0.3889 | | 1.9809 | 14.0 | 8848 | 1.9124 | 0.3897 | | 1.844 | 15.0 | 9480 | 1.9027 | 0.3948 | | 1.9048 | 16.0 | 10112 | 1.8971 | 0.3948 | | 2.0342 | 17.0 | 10744 | 1.8912 | 0.4 | | 1.822 | 18.0 | 11376 | 1.8876 | 0.4008 | | 1.8676 | 19.0 | 12008 | 1.8858 | 0.4024 | | 1.9147 | 20.0 | 12640 | 1.8852 | 0.4024 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.21.0 - Tokenizers 0.13.2