File size: 2,383 Bytes
2683f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Karma_3Class_RMSprop_1e5_20Epoch_Beit-large-224_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8561998578247182
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Karma_3Class_RMSprop_1e5_20Epoch_Beit-large-224_fold1

This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6210
- Accuracy: 0.8562

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.314         | 1.0   | 2469  | 0.3707          | 0.8430   |
| 0.2191        | 2.0   | 4938  | 0.3892          | 0.8507   |
| 0.1908        | 3.0   | 7407  | 0.4759          | 0.8516   |
| 0.0575        | 4.0   | 9876  | 0.6918          | 0.8571   |
| 0.0175        | 5.0   | 12345 | 1.0455          | 0.8526   |
| 0.1052        | 6.0   | 14814 | 1.2531          | 0.8548   |
| 0.0016        | 7.0   | 17283 | 1.3936          | 0.8554   |
| 0.0           | 8.0   | 19752 | 1.5161          | 0.8563   |
| 0.0218        | 9.0   | 22221 | 1.6233          | 0.8582   |
| 0.0           | 10.0  | 24690 | 1.6210          | 0.8562   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2