File size: 1,551 Bytes
b06da65 d183e60 b06da65 d183e60 b06da65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
library_name: transformers.js
base_model: tasksource/deberta-small-long-nli
pipeline_tag: zero-shot-classification
---
https://huggingface.co/tasksource/deberta-small-long-nli with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
You can then use the model for zero-shot classification as follows:
```js
import { pipeline } from '@huggingface/transformers';
// Create a zero-shot classification pipeline
const classifier = await pipeline('zero-shot-classification', 'onnx-community/deberta-small-long-nli');
// Classify input text
const text = 'one day I will see the world';
const candidate_labels = ['travel', 'cooking', 'dancing'];
const output = await classifier(text, candidate_labels);
console.log(output);
// {
// sequence: 'one day I will see the world',
// labels: [ 'travel', 'dancing', 'cooking' ],
// scores: [ 0.8759302251623927, 0.10660000891028172, 0.017469765927325517 ]
// }
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |