File size: 1,724 Bytes
31b6198 7fa7599 31b6198 dc14267 7c9ba42 dc14267 31b6198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
---
base_model: facebook/maskformer-resnet101-coco-stuff
library_name: transformers.js
pipeline_tag: image-segmentation
---
https://huggingface.co/facebook/maskformer-resnet101-coco-stuff with ONNX weights to be compatible with Transformers.js.
## Usage (Transformers.js)
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```
**Example:** Image segmentation with `onnx-community/maskformer-resnet101-coco-stuff`.
```js
import { pipeline } from '@huggingface/transformers';
// Create an image segmentation pipeline
const segmenter = await pipeline('image-segmentation', 'onnx-community/maskformer-resnet101-coco-stuff');
// Segment an image
const url = 'http://images.cocodataset.org/val2017/000000039769.jpg';
const output = await segmenter(url);
console.log(output)
// [
// {
// score: 0.9626941680908203,
// label: 'couch',
// mask: RawImage { ... }
// },
// {
// score: 0.9967071413993835,
// label: 'cat',
// mask: RawImage { ... }
// },
// ...
// }
// ]
```
You can visualize the outputs with:
```js
for (let i = 0; i < output.length; ++i) {
const { mask, label } = output[i];
mask.save(`${label}-${i}.png`);
}
```
---
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |