--- license: apache-2.0 --- ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Selfie segmentation with `onnx-community/mediapipe_selfie_segmentation-web`. ```js import { AutoModel, RawImage, Tensor } from '@huggingface/transformers'; // Load model and processor const model_id = 'onnx-community/mediapipe_selfie_segmentation-web'; const model = await AutoModel.from_pretrained(model_id, { dtype: 'fp32' }); // Load image from URL const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/selfie_segmentation.png'; const image = await RawImage.read(url); // Predict alpha matte const { alphas } = await model({ pixel_values: new Tensor( 'uint8', image.data, [1, image.height, image.width, 3], ), }); // Save output mask const mask = RawImage.fromTensor(alphas[0].mul(255).to('uint8'), 'HWC') mask.save('mask.png'); // (Optional) Apply mask to original image const result = image.clone().putAlpha(mask); result.save('result.png'); ``` | Input image | Predicted mask | Output image | | :----------:|:------------:|:------------:| | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/NR--WRELcGKsY8c7dI7s5.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/tAsPevxCzxGank2iHXo7o.png) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/8RMmqdfcgr4cclN5Dv6ae.png) |