Xenova HF staff commited on
Commit
b1e9b6a
·
verified ·
1 Parent(s): 02858c8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -1
README.md CHANGED
@@ -7,7 +7,9 @@ pipeline_tag: automatic-speech-recognition
7
  ---
8
 
9
 
10
- ## Usage (Transformers.js)
 
 
11
 
12
  If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
13
  ```bash
@@ -23,3 +25,66 @@ const output = await transcriber("https://huggingface.co/datasets/Xenova/transfo
23
  console.log(output);
24
  // { text: 'And so my fellow Americans ask not what your country can do for you as what you can do for your country.' }
25
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ---
8
 
9
 
10
+ ## Usage
11
+
12
+ ### Transformers.js
13
 
14
  If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
15
  ```bash
 
25
  console.log(output);
26
  // { text: 'And so my fellow Americans ask not what your country can do for you as what you can do for your country.' }
27
  ```
28
+
29
+ ### ONNXRuntime
30
+
31
+ ```py
32
+ import numpy as np
33
+ import onnxruntime as ort
34
+ from transformers import AutoConfig, AutoTokenizer
35
+ import librosa
36
+
37
+ # Load config and tokenizer
38
+ model_id = 'onnx-community/moonshine-base-ONNX'
39
+ config = AutoConfig.from_pretrained(model_id)
40
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
41
+
42
+ # Load encoder and decoder sessions
43
+ encoder_session = ort.InferenceSession('./onnx/encoder_model_quantized.onnx')
44
+ decoder_session = ort.InferenceSession('./onnx/decoder_model_merged_quantized.onnx')
45
+
46
+ # Set config values
47
+ eos_token_id = config.eos_token_id
48
+ num_key_value_heads = config.decoder_num_key_value_heads
49
+ dim_kv = config.hidden_size // config.decoder_num_attention_heads
50
+
51
+ # Load audio
52
+ audio_file = 'jfk.wav'
53
+ audio = librosa.load(audio_file, sr=16_000)[0][None]
54
+
55
+ # Run encoder
56
+ encoder_outputs = encoder_session.run(None, dict(input_values=audio))[0]
57
+
58
+ # Prepare decoder inputs
59
+ batch_size = encoder_outputs.shape[0]
60
+ input_ids = np.array([[config.decoder_start_token_id]] * batch_size)
61
+ past_key_values = {
62
+ f'past_key_values.{layer}.{module}.{kv}': np.zeros([batch_size, num_key_value_heads, 0, dim_kv], dtype=np.float32)
63
+ for layer in range(config.decoder_num_hidden_layers)
64
+ for module in ('decoder', 'encoder')
65
+ for kv in ('key', 'value')
66
+ }
67
+
68
+ # max 6 tokens per second of audio
69
+ max_len = min((audio.shape[-1] // 16_000) * 6, config.max_position_embeddings)
70
+
71
+ generated_tokens = input_ids
72
+ for i in range(max_len):
73
+ use_cache_branch = i > 0
74
+ logits, *present_key_values = decoder_session.run(None, dict(
75
+ input_ids=generated_tokens[:, -1:],
76
+ encoder_hidden_states=encoder_outputs,
77
+ use_cache_branch=[use_cache_branch],
78
+ **past_key_values,
79
+ ))
80
+ next_tokens = logits[:, -1].argmax(-1, keepdims=True)
81
+ for j, key in enumerate(past_key_values):
82
+ if not use_cache_branch or 'decoder' in key:
83
+ past_key_values[key] = present_key_values[j]
84
+ generated_tokens = np.concatenate([generated_tokens, next_tokens], axis=-1)
85
+ if (next_tokens == eos_token_id).all():
86
+ break
87
+
88
+ result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
89
+ print(result)
90
+ ```