--- base_model: PekingU/rtdetr_r50vd library_name: transformers.js --- https://huggingface.co/PekingU/rtdetr_r50vd with ONNX weights to be compatible with Transformers.js. # Usage (Transformers.js) > [!IMPORTANT] > NOTE: RT-DETR support is experimental and requires you to install Transformers.js [v3](https://github.com/xenova/transformers.js/tree/v3) from source. If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [GitHub](https://github.com/xenova/transformers.js/tree/v3) using: ```bash npm install xenova/transformers.js#v3 ``` **Example:** Perform object-detection with `onnx-community/rtdetr_r50vd`. ```js import { pipeline } from '@xenova/transformers'; const detector = await pipeline('object-detection', 'onnx-community/rtdetr_r50vd'); const img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg'; const output = await detector(img, { threshold: 0.9 }); // [{ // score: 0.9720445871353149, // label: 'cat', // box: { xmin: 14, ymin: 54, xmax: 319, ymax: 472 } // }, // ... // { // score: 0.9795005917549133, // label: 'sofa', // box: { xmin: 0, ymin: 0, xmax: 640, ymax: 472 } // }] ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).