File size: 1,428 Bytes
97f97a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: light-embed
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity

---

# onnx-models/msmarco-bert-base-dot-v5-onnx

This is the ONNX-ported version of the [sentence-transformers/msmarco-bert-base-dot-v5](https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5) for generating text embeddings.

## Model details
- Embedding dimension: 768
- Max sequence length: 512
- File size on disk:  0.41 GB
- Modules incorporated in the onnx: Transformer, Pooling

<!--- Describe your model here -->

## Usage

Using this model becomes easy when you have [light-embed](https://pypi.org/project/light-embed/) installed:

```
pip install -U light-embed
```

Then you can use the model by specifying the *original model name* like this:

```python
from light_embed import TextEmbedding
sentences = [
	"This is an example sentence",
	"Each sentence is converted"
]

model = TextEmbedding('sentence-transformers/msmarco-bert-base-dot-v5')
embeddings = model.encode(sentences)
print(embeddings)
```

or by specifying the *onnx model name* like this:

```python
from light_embed import TextEmbedding
sentences = [
	"This is an example sentence",
	"Each sentence is converted"
]

model = TextEmbedding('onnx-models/msmarco-bert-base-dot-v5-onnx')
embeddings = model.encode(sentences)
print(embeddings)
```

## Citing & Authors

Binh Nguyen / [email protected]