--- pipeline_tag: text-to-image license: other license_name: sai-nc-community license_link: https://huggingface.co/stabilityai/sdxl-turbo/blob/main/LICENSE.TXT base_model: stabilityai/sdxl-turbo language: - en tags: - stable-diffusion - sdxl - onnxruntime - onnx - text-to-image --- # Stable Diffusion XL Turbo for ONNX Runtime CUDA ## Introduction This repository hosts the optimized onnx models of **SDXL Turbo** to accelerate inference with ONNX Runtime CUDA execution provider for Nvidia GPUs. It cannot run in other providers like CPU or DirectML. The models are generated by [Olive](https://github.com/microsoft/Olive/tree/main/examples/stable_diffusion) with command like the following: ``` python stable_diffusion_xl.py --provider cuda --model_id stabilityai/sdxl-turbo --optimize --use_fp16_fixed_vae ``` See the [usage instructions](#usage-example) for how to run the SDXL pipeline with the ONNX files hosted in this repository. ## Model Description - **Developed by:** Stability AI - **Model type:** Diffusion-based text-to-image generative model - **License:** [STABILITY AI NON-COMMERCIAL RESEARCH COMMUNITY LICENSE](https://huggingface.co/stabilityai/sd-turbo/blob/main/LICENSE) - **Model Description:** This is a conversion of the [SDXL-Turbo](https://huggingface.co/stabilityai/sdxl-turbo) model for [ONNX Runtime](https://github.com/microsoft/onnxruntime) inference with CUDA execution provider. The VAE decoder is converted from [sdxl-vae-fp16-fix](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix). There are slight discrepancies between its output and that of the original VAE, but the decoded images should be [close enough for most purposes](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix/discussions/7#64c5c0f8e2e5c94bd04eaa80). ## Usage Example Following the [demo instructions](https://github.com/microsoft/onnxruntime/blob/main/onnxruntime/python/tools/transformers/models/stable_diffusion/README.md#run-demo-with-docker). Example steps: 0. Install nvidia-docker using these [instructions](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html). 1. Clone onnxruntime repository. ```shell git clone https://github.com/microsoft/onnxruntime cd onnxruntime ``` 2. Download the SDXL ONNX files from this repo ```shell git lfs install git clone https://huggingface.co/tlwu/sdxl-turbo-onnxruntime ``` 3. Launch the docker ```shell docker run --rm -it --gpus all -v $PWD:/workspace nvcr.io/nvidia/pytorch:23.10-py3 /bin/bash ``` 4. Build ONNX Runtime from source ```shell export CUDACXX=/usr/local/cuda-12.2/bin/nvcc git config --global --add safe.directory '*' sh build.sh --config Release --build_shared_lib --parallel --use_cuda --cuda_version 12.2 \ --cuda_home /usr/local/cuda-12.2 --cudnn_home /usr/lib/x86_64-linux-gnu/ --build_wheel --skip_tests \ --use_tensorrt --tensorrt_home /usr/src/tensorrt \ --cmake_extra_defines onnxruntime_BUILD_UNIT_TESTS=OFF \ --cmake_extra_defines CMAKE_CUDA_ARCHITECTURES=80 \ --allow_running_as_root python3 -m pip install build/Linux/Release/dist/onnxruntime_gpu-*-cp310-cp310-linux_x86_64.whl --force-reinstall ``` If the GPU is not A100, change CMAKE_CUDA_ARCHITECTURES=80 in the command line according to the GPU compute capacity (like 89 for RTX 4090, or 86 for RTX 3090). If your machine has less than 64GB memory, replace --parallel by --parallel 4 --nvcc_threads 1 to avoid out of memory. 5. Install libraries and requirements ```shell python3 -m pip install --upgrade pip cd /workspace/onnxruntime/python/tools/transformers/models/stable_diffusion python3 -m pip install -r requirements-cuda12.txt python3 -m pip install --upgrade polygraphy onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com ``` 6. Perform ONNX Runtime optimized inference ```shell python3 demo_txt2img_xl.py \ "starry night over Golden Gate Bridge by van gogh" \ --version xl-turbo \ --engine-dir /workspace/sdxl-turbo-onnxruntime ```