oohtmeel commited on
Commit
316e25b
1 Parent(s): c6714db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -3
README.md CHANGED
@@ -19,14 +19,36 @@ I also used this tutorial.[Swin Transformer (tiny-sized model)](https://colab.re
19
 
20
  The model can be used to classify JPEG images of CT scans into either cancer positive or
21
  Cancer negative groups.
 
22
 
23
 
24
 
25
- ### Out-of-Scope Use
26
 
27
- This model is not meant to be used in place of medical diagnosis
 
 
 
28
 
29
 
30
  ## How to Use
31
- from transformers import pipeline, set_seed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
 
19
 
20
  The model can be used to classify JPEG images of CT scans into either cancer positive or
21
  Cancer negative groups.
22
+ I think it would work okay for any image classification task.
23
 
24
 
25
 
26
+ ## Training Data
27
 
28
+ The model was trained on data originally obtained from the National Cancer Institute
29
+ Imaging Data Commons. https://portal.imaging.datacommons.cancer.gov/explore/
30
+ The data set used consisted of about 11,000 images which were transformed CT scans
31
+ some of which contained Cancerous Nodules and some that did not.
32
 
33
 
34
  ## How to Use
35
+ ```python
36
+
37
+ from huggingface_hub import hf_hub_download
38
+ from PIL import Image
39
+
40
+ abc= hf_hub_download(repo_id="oohtmeel/swin-tiny-patch4-finetuned-lung-cancer-ct-scans",
41
+ filename="_X000a109d-56da-4c3f-8680-55afa04d6ae0.dcm.jpg.jpg")
42
+ image = Image.open(abc)
43
+ processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
44
+ model = AutoModelForImageClassification.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
45
+ inputs = processor(images=image, return_tensors="pt")
46
+ outputs = model(**inputs)
47
+ logits = outputs.logits
48
+ predicted_class_idx = logits.argmax(-1).item()
49
+ print("Predicted class:", model.config.id2label[predicted_class_idx])
50
+
51
+ ```
52
+
53
+
54