from __future__ import annotations import json import os import warnings from pathlib import Path from typing import Any, Dict, List, Mapping, Optional, Tuple, Union import sentencepiece as spm from huggingface_hub import hf_hub_download, list_repo_files from transformers.tokenization_utils import PreTrainedTokenizer from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE # Define special tokens used in the tokenizer EOD_TOKEN = "" PAD_TOKEN = "" BOS_TOKEN = "" EOS_TOKEN = "" UNK_TOKEN = "" REPO_ID = "openGPT-X/Teuken-7B-instruct-commercial-v0.4" class HFGPTXTokenizer(PreTrainedTokenizer): """ A custom tokenizer class that extends Hugging Face's PreTrainedTokenizer. It is specifically designed to work with SentencePiece models and integrates with Hugging Face's tokenizer utilities. """ model_file_glob = "*tokenizer.json" vocab_files_names = {"tokenizer_file": "tokenizer.json"} decode_kwargs: List[str] = [] def _encode(self, text: str, return_tokens: bool = False, is_continuation: bool = False): """ Encode a given text using the tokenizer. Args: text (str): The text to encode. return_tokens (bool): If True, returns token strings instead of token IDs. is_continuation (bool): If True, uses a continuation tokenizer (if available). Returns: List[int] or List[str]: Encoded text as a list of token IDs or token strings. """ assert self.tok is not None, "No tokenizer is currently loaded" # Variant with additional sp processor: tokenizer = self.continuation_tokenizer if is_continuation else self.tok if return_tokens: return tokenizer.encode_as_pieces(text) else: return tokenizer.encode(text) def create_list_of_special_tokens(self) -> List[str]: """ Create a list of special tokens, including the BOS, EOS, PAD, EOD tokens, and 256 additional placeholder tokens. Returns: List[str]: List of special tokens. """ return [self.bos_token, self.eos_token, self.pad_token, self.eod_token] + [ f"" for i in range(256) ] def find_tokenizer_config(self, config_path: Path, repo_id: str = None) -> Path: if repo_id is None: raise ValueError("repo_id must be provided if config_path is not a local file") try: # List all files in the repo repo_files = list_repo_files(repo_id) # Find the tokenizer config file tokenizer_files = [f for f in repo_files if f.endswith('tokenizer_config.json')] if not tokenizer_files: raise FileNotFoundError(f"No tokenizer_config.json file found in repository {repo_id}") # Use the first tokenizer_config.json file found tokenizer_config_file = tokenizer_files[0] print(f"Found tokenizer config file: {tokenizer_config_file}") # Download the file tokenizer_config_file_or_name = hf_hub_download(repo_id=repo_id, filename=tokenizer_config_file) print(f"Downloaded tokenizer config file to: {tokenizer_config_file_or_name}") return tokenizer_config_file_or_name except Exception as e: raise OSError(f"Failed to download tokenizer model: {str(e)}") def instantiate_from_file_or_name(self, model_file_or_name: str, repo_id: str = None): """ Load the tokenizer model from a file or download it from a repository. Args: model_file_or_name (str): Path to the model file or the model name. repo_id (str, optional): Repository ID from which to download the model file. Returns: spm.SentencePieceProcessor: Loaded SentencePieceProcessor instance. Raises: ValueError: If repo_id is not provided when model_file_or_name is not a file. OSError: If the model file cannot be loaded or downloaded. """ if not os.path.isfile(model_file_or_name): if repo_id is None: raise ValueError("repo_id must be provided if model_file_or_name is not a local file") try: # List all files in the repo repo_files = list_repo_files(repo_id) # Find the tokenizer model file tokenizer_files = [f for f in repo_files if f.endswith('.model')] if not tokenizer_files: raise FileNotFoundError(f"No .model file found in repository {repo_id}") # Use the first .model file found model_file = tokenizer_files[0] print(f"Found tokenizer model file: {model_file}") # Download the file model_file_or_name = hf_hub_download(repo_id=repo_id, filename=model_file) print(f"Downloaded tokenizer model to: {model_file_or_name}") except Exception as e: raise OSError(f"Failed to download tokenizer model: {str(e)}") try: return spm.SentencePieceProcessor(model_file=model_file_or_name) except Exception as e: raise OSError(f"Failed to load tokenizer model: {str(e)}") def __init__( self, model_path: Optional[str] = None, config_path: Optional[str] = None, **kwargs: Any, ) -> None: """ Initialize the tokenizer. Args: model_path (Optional[str]): Path to the tokenizer model file. config_path (Optional[str]): Path to the tokenizer configuration file. **kwargs: Additional keyword arguments passed to the superclass. This method also ensures backward compatibility by setting `clean_up_tokenization_spaces` to False by default. """ # Prevent cleanup of tokenization spaces to maintain backward compatibility self.clean_up_tokenization_spaces = kwargs.setdefault("clean_up_tokenization_spaces", False) self.vocab = None cp_path = kwargs.get("name_or_path", ".") if model_path is None: model_path = str(Path(cp_path) / self.vocab_files_names["tokenizer_file"]) self.tok = self.instantiate_from_file_or_name(model_path, repo_id=REPO_ID) super().__init__(**kwargs) # Specify special tokens which we know the value of. # EOD from `tok` is used as what is called EOS in HuggingFace. # Since there is no corresponding mapping for EOS from `tok` in # HuggingFace, it is treated as an additional special token. # Same for all other special tokens. self.eos_token = EOD_TOKEN self.bos_token = BOS_TOKEN self.pad_token = PAD_TOKEN if not self.additional_special_tokens: self.additional_special_tokens = [ token for token in self.create_list_of_special_tokens() # Filter out the special tokens we added manually. if token not in [ self.eos_token, self.bos_token, self.pad_token, ] ] if config_path is None: config_path = str(Path(cp_path) / TOKENIZER_CONFIG_FILE) if os.path.isfile(config_path): self.tokenizer_config = self.load_json(Path(config_path)) else: # Load from repo self.tokenizer_config = self.load_json(Path(self.find_tokenizer_config(Path(config_path), repo_id=REPO_ID))) @property def vocab_size(self) -> int: """ Get the size of the tokenizer vocabulary. Returns: int: The size of the vocabulary. """ return self.tok.GetPieceSize() def get_vocab(self) -> Dict[str, int]: """ Get the vocabulary as a dictionary mapping token strings to their IDs. Returns: Dict[str, int]: Vocabulary mapping. """ if self.vocab is None: self.vocab = {self.tok.IdToPiece(i): i for i in range(self.vocab_size)} return self.vocab def _tokenize(self, text: str, **kwargs) -> List[int]: """ Tokenize the input text. Args: text (str): Text to tokenize. **kwargs: Additional keyword arguments. Returns: List[int]: List of token IDs. """ return_tokens = kwargs.pop("return_tokens", True) return self._encode(text, return_tokens=return_tokens, **kwargs) def _convert_token_to_id(self, token: str) -> int: """ Convert a token string to its corresponding ID. Args: token (str): The token to convert. Returns: int: The token's ID. Raises: ValueError: If the token is unknown and cannot be encoded to a single ID. """ return self.tok.PieceToId(token) def decode( self, token_ids: Union[List[int], List[List[int]]], num_threads: Optional[int] = None, ) -> str: """ Decode a list of token IDs into a string. Args: token_ids (Union[List[int], List[List[int]]]): List of token IDs or lists of token IDs. num_threads (Optional[int]): Number of threads to use for decoding. Returns: str: Decoded string. """ return self.tok.decode(input=token_ids, num_threads=num_threads) def _convert_id_to_token(self, index: int) -> str: """ Convert a token ID to its corresponding token string. Args: index (int): Token ID. Returns: str: Corresponding token string. """ return self.tok.IdToPiece(index) def convert_tokens_to_string(self, tokens: List[str]) -> str: """ Convert a list of tokens into a single string. Args: tokens (List[str]): List of token strings. Returns: str: Concatenated string of tokens. """ return self.tok.DecodePieces(tokens) def _tok_decode(self, token_ids: List[int], **kwargs: Any) -> str: """ Internal method to decode token IDs with additional arguments. Args: token_ids (List[int]): List of token IDs. **kwargs: Additional arguments to pass to the decode method. Returns: str: Decoded string. This method also issues a warning if unsupported arguments are provided. """ passed_kwargs = {key: value for (key, value) in kwargs.items() if key in self.decode_kwargs} if len(passed_kwargs) != len(kwargs): warnings.warn("silently ignoring some arguments to `decode` due to missing " "support from the tokenizer.") text = self.decode(token_ids, **passed_kwargs) return text def save_tokenizer(self, save_dir: str) -> None: if not os.path.isdir(save_dir): print(f"Vocabulary path ({save_dir}) should be a directory") return out_vocab_file = os.path.join(save_dir, "tokenizer.model") # if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): # copyfile(self.vocab_file, out_vocab_file) # elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as f: content_spiece_model = self.tok.serialized_model_proto() f.write(content_spiece_model) return (out_vocab_file,) def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, spaces_between_special_tokens: bool = True, **kwargs: Any, ) -> str: text = self._tok_decode( token_ids, skip_special_tokens=skip_special_tokens, spaces_between_special_tokens=spaces_between_special_tokens, **kwargs, ) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: warnings.warn( "when cleaning up tokenization spaces, this will not behave " "like the original `GPTXTokenizer`., Please supply " "`clean_up_tokenization_spaces=False` for decoding." ) clean_text = self.clean_up_tokenization(text) return clean_text else: return text def save_vocabulary( self, save_directory: str, filename_prefix: Optional[str] = None, ) -> Tuple[str]: filename_prefix = filename_prefix + "-" if filename_prefix else "" save_directory = Path(save_directory) self._save_tokenizer_config(save_directory, filename_prefix) tokenizer_file_path = self._save_tokenizer(save_directory, filename_prefix) return (tokenizer_file_path,) def _save_tokenizer_config( self, save_directory: Path, filename_prefix: str, ) -> str: self.save_tokenizer_config(save_directory) old_tokenizer_config_path = save_directory / TOKENIZER_CONFIG_FILE assert old_tokenizer_config_path.is_file(), "tokenizer config path changed" new_tokenizer_config_path = save_directory / (filename_prefix + old_tokenizer_config_path.name) old_tokenizer_config_path.replace(new_tokenizer_config_path) return str(new_tokenizer_config_path) def _find_tokenizer_files(self, save_directory: Path) -> List[Path]: files = list(Path(save_directory).glob(self.model_file_glob)) return files def _get_tokenizer_file(self, files: List[Path]): assert files, "no saved tokenizer file found" assert len(files) <= 1, "cannot handle multiple saved tokenizer files" return files[0] def _save_tokenizer( self, save_directory: Path, filename_prefix: str, ) -> str: self.save_tokenizer(str(save_directory)) tokenizer_files = self._find_tokenizer_files(save_directory) old_tokenizer_file_path = self._get_tokenizer_file(tokenizer_files) assert old_tokenizer_file_path.is_file(), "could not access saved tokenizer file" new_tokenizer_file_path = save_directory / (filename_prefix + self.vocab_files_names["tokenizer_file"]) old_tokenizer_file_path.replace(new_tokenizer_file_path) return str(new_tokenizer_file_path) def save_tokenizer_config(self, save_dir: Path) -> None: # convert Path to str for k in self.tokenizer_config: if isinstance(self.tokenizer_config[k], Path): self.tokenizer_config[k] = str(self.tokenizer_config[k]) info_file = save_dir / "tokenizer_config.json" with info_file.open("w") as f: json.dump(self.tokenizer_config, f, indent=4) def load_json(self, path: Path) -> dict: with path.open("r") as f: return json.load(f) class SPTokenizer(HFGPTXTokenizer): model_file_glob = "*tokenizer.model" vocab_files_names = {"tokenizer_file": "tokenizer.model"} decode_kwargs = ["num_threads"] # `is_continuation` does not work without this, but it doesn't # implement all APIs of `PreTrainedTokenizer`. def encode(self, text: str, **kwargs) -> List[int]: return_tokens = kwargs.pop('return_tokens', False) is_continuation = kwargs.pop('is_continuation', False) return self._encode( text, return_tokens=return_tokens, is_continuation=is_continuation, ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.eos_token = "" self.eos_token_id = 2 self.system_messages_by_lang = { # translations by deepl / google translate "BG": "Чат между човек и асистент с изкуствен интелект. Асистентът дава полезни и учтиви отговори на въпросите на човека.", # noqa "CS": "Chat mezi člověkem a asistentem s umělou inteligencí. Asistent poskytuje vstřícné a zdvořilé odpovědi na otázky člověka.", # noqa "DA": "En chat mellem et menneske og en assistent med kunstig intelligens, som giver hjælpsomme og høflige svar på menneskets spørgsmål.", # noqa "DE": "Ein Gespräch zwischen einem Menschen und einem Assistenten mit künstlicher Intelligenz. Der Assistent gibt hilfreiche und höfliche Antworten auf die Fragen des Menschen.", # noqa "EL": "Μια συνομιλία μεταξύ ενός ανθρώπου και ενός βοηθού τεχνητής νοημοσύνης. Ο βοηθός δίνει χρήσιμες και ευγενικές απαντήσεις στις ερωτήσεις του ανθρώπου.", # noqa "EN": "A chat between a human and an artificial intelligence assistant.The assistant gives helpful and polite answers to the human's questions.", # noqa "ES": "Una conversación entre un humano y un asistente de inteligencia artificial. El asistente da respuestas útiles y amables a las preguntas del humano.", # noqa "ET": "Inimese ja tehisintellekti assistendi vaheline vestlus. Assistent annab inimese küsimustele abivalmis ja viisakaid vastuseid.", # noqa "FI": "Ihmisen ja tekoälyavustajan välinen keskustelu. Avustaja antaa avuliaita ja kohteliaita vastauksia ihmisen kysymyksiin.", # noqa "FR": "Conversation entre un humain et un assistant doté d'une intelligence artificielle. L'assistant donne des réponses utiles et polies aux questions de l'homme.", # noqa "GA": "Comhrá idir duine agus cúntóir hintleachta saorga. Tugann an cúntóir freagraí cabhracha dea-bhéasacha ar cheisteanna an duine.", # noqa "HR": "Razgovor između čovjeka i pomoćnika umjetne inteligencije. Pomoćnik daje korisne i ljubazne odgovore na ljudska pitanja.", # noqa "HU": "Egy ember és egy mesterséges intelligencia asszisztens közötti beszélgetés. Az asszisztens segítőkész és udvarias válaszokat ad az ember kérdéseire.", # noqa "IT": "Una chat tra un umano e un assistente di intelligenza artificiale. L'assistente fornisce risposte utili ed educate alle domande dell'uomo.", # noqa "LT": "Žmogaus ir dirbtinio intelekto asistento pokalbis. Asistentas naudingai ir mandagiai atsako į žmogaus klausimus.", # noqa "LV": "Cilvēka un mākslīgā intelekta asistenta tērzēšana. Asistents sniedz noderīgas un pieklājīgas atbildes uz cilvēka jautājumiem.", # noqa "MT": "Chat bejn bniedem u assistent ta' intelliġenza artifiċjali. L-assistent jagħti tweġibiet ta' għajnuna u edukat għall-mistoqsijiet tal-bniedem.", # noqa "NL": "Een chat tussen een mens en een assistent met kunstmatige intelligentie. De assistent geeft behulpzame en beleefde antwoorden op de vragen van de mens.", # noqa "PL": "Czat między człowiekiem a asystentem sztucznej inteligencji. Asystent udziela pomocnych i uprzejmych odpowiedzi na pytania człowieka.", # noqa "PT": "Uma conversa entre um ser humano e um assistente de inteligência artificial. O assistente dá respostas úteis e educadas às perguntas do utilizador.", # noqa "RO": "O conversație între un om și un asistent cu inteligență artificială. Asistentul oferă răspunsuri utile și politicoase la întrebările omului.", # noqa "SK": "Rozhovor medzi človekom a asistentom s umelou inteligenciou. Asistent poskytuje užitočné a zdvorilé odpovede na otázky človeka.", # noqa "SL": "Pogovor med človekom in pomočnikom z umetno inteligenco. Pomočnik človeku prijazno in vljudno odgovarja na njegova vprašanja.", # noqa "SV": "En chatt mellan en människa och en assistent med artificiell intelligens. Assistenten ger hjälpsamma och artiga svar på människans frågor.", # noqa } chat_template = "{%- for message in messages %}\n{%- if (message['role']|lower == 'user') != (loop.index0 % 2 == 0) %}\n{{- raise_exception('Roles must alternate User/Assistant/User/Assistant/...') }}\n{%- endif %}\n{%-if message['role']|lower == 'user' %}\n{{- message['role']|capitalize + ': ' + message['content'] + '\\n' }}\n{%- elif message['role']|lower == 'assistant' %}\n{{- message['role']|capitalize + ': ' + message['content'] + eos_token + '\\n' }}\n{%- else %}\n{{- raise_exception('Only user and assistant roles are supported!') }}\n {%- endif %}\n{%- endfor %}{%-if add_generation_prompt %}\n{{- 'Assistant: '}}\n{%- endif %}\n" self.chat_template = { lang: f"System: {sys_msg}" + "{{- '\\n'}}\n" + chat_template for lang, sys_msg in self.system_messages_by_lang.items() }