File size: 15,536 Bytes
3b6aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287e3f8
3b6aeff
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
from typing import Optional, Union, Dict, Any

import torch
import math
import PIL.Image
import PIL.ImageSequence
import numpy as np
import PIL
from PIL import Image

from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers import AutoImageProcessor
from transformers.image_transforms import to_channel_dimension_format
from transformers.image_utils import (
    ImageInput, 
    make_list_of_images, 
    valid_images, 
    is_torch_tensor, 
    to_numpy_array, 
    infer_channel_dimension_format,
    ChannelDimension
)


def recursive_converter(converter, value):
    if isinstance(value, list):
        new_value = []
        for v in value:
            new_value += [recursive_converter(converter, v)]
        return new_value
    else:
        return converter(value)


class MiniCPMVBatchFeature(BatchFeature):
    r"""
    Extend from BatchFeature for supporting various image size
    """
    def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
        super().__init__(data)
        self.convert_to_tensors(tensor_type=tensor_type)

    def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
        if tensor_type is None:
            return self
        
        is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)

        def converter(value):
            try:
                if not is_tensor(value):
                    tensor = as_tensor(value)
                    return tensor
            except:  # noqa E722
                if key == "overflowing_values":
                    raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
                raise ValueError(
                    "Unable to create tensor, you should probably activate padding "
                    "with 'padding=True' to have batched tensors with the same length."
                )


        for key, value in self.items():
            self[key] = recursive_converter(converter, value)
        return self
            
    def to(self, *args, **kwargs) -> "MiniCPMVBatchFeature":
        requires_backends(self, ["torch"])
        import torch

        def cast_tensor(v):
            # check if v is a floating point
            if torch.is_floating_point(v):
                # cast and send to device
                return v.to(*args, **kwargs)
            elif device is not None:
                return v.to(device=device)
            else:
                return v

        new_data = {}
        device = kwargs.get("device")
        # Check if the args are a device or a dtype
        if device is None and len(args) > 0:
            # device should be always the first argument
            arg = args[0]
            if is_torch_dtype(arg):
                # The first argument is a dtype
                pass
            elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
                device = arg
            else:
                # it's something else
                raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
        # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
        for k, v in self.items():
            new_data[k] = recursive_converter(cast_tensor, v)
        self.data = new_data
        return self


class MiniCPMVImageProcessor(BaseImageProcessor):
    model_input_names = ["pixel_values"]

    def __init__(
            self, 
            max_slice_nums=9,
            scale_resolution=448,
            patch_size=14,
            **kwargs):
        super().__init__(**kwargs)
        self.max_slice_nums = max_slice_nums
        self.scale_resolution = scale_resolution
        self.patch_size = patch_size
        self.image_feature_size = kwargs.pop("image_feature_size", 64)
        self.im_start_token = kwargs.pop("im_start", "<image>")
        self.im_end_token = kwargs.pop("im_end", "</image>")
        self.slice_start_token = kwargs.pop("slice_start", "<slice>")
        self.slice_end_token = kwargs.pop("slice_end", "</slice>")
        self.unk_token = kwargs.pop("unk", "<unk>")
        self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
        self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
        self.version = kwargs.pop("version", 2.0)

    def ensure_divide(self, length, patch_size):
        return max(round(length / patch_size) * patch_size, patch_size)

    def find_best_resize(self,
                         original_size,
                         scale_resolution,
                         patch_size,
                         allow_upscale=False):
        width, height = original_size
        if (width * height >
                scale_resolution * scale_resolution) or allow_upscale:
            r = width / height
            height = int(scale_resolution / math.sqrt(r))
            width = int(height * r)
        best_width = self.ensure_divide(width, patch_size)
        best_height = self.ensure_divide(height, patch_size)
        return (best_width, best_height)

    def get_refine_size(self,
                        original_size,
                        grid,
                        scale_resolution,
                        patch_size,
                        allow_upscale=False):
        width, height = original_size
        grid_x, grid_y = grid

        refine_width = self.ensure_divide(width, grid_x)
        refine_height = self.ensure_divide(height, grid_y)

        grid_width = refine_width / grid_x
        grid_height = refine_height / grid_y

        best_grid_size = self.find_best_resize((grid_width, grid_height),
                                               scale_resolution,
                                               patch_size,
                                               allow_upscale=allow_upscale)
        refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
        return refine_size

    def split_to_patches(self, image, grid):
        patches = []
        width, height = image.size
        grid_x = int(width / grid[0])
        grid_y = int(height / grid[1])
        for i in range(0, height, grid_y):
            images = []
            for j in range(0, width, grid_x):
                box = (j, i, j + grid_x, i + grid_y)
                patch = image.crop(box)
                images.append(patch)
            patches.append(images)
        return patches

    def slice_image(
        self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
    ):
        original_size = image.size
        original_width, original_height = original_size
        log_ratio = math.log(original_width / original_height)
        ratio = original_width * original_height / (scale_resolution * scale_resolution)
        multiple = min(math.ceil(ratio), max_slice_nums)

        source_image = None
        best_grid = None
        patches = []

        if multiple <= 1 or never_split:
            # dont need to slice, upsample
            best_size = self.find_best_resize(
                original_size, scale_resolution, patch_size, allow_upscale=True
            )
            source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
        else:
            candidate_split_grids_nums = []
            for i in [multiple - 1, multiple, multiple + 1]:
                if i == 1 or i > max_slice_nums:
                    continue
                candidate_split_grids_nums.append(i)

            # source image, down-sampling and ensure divided by patch_size
            best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
            source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
            candidate_grids = []

            # find best grid
            for split_grids_nums in candidate_split_grids_nums:
                m = 1
                while m <= split_grids_nums:
                    if split_grids_nums % m == 0:
                        candidate_grids.append([m, split_grids_nums // m])
                    m += 1

            best_grid = [1, 1]
            min_error = float("inf")
            for grid in candidate_grids:
                error = abs(log_ratio - math.log(grid[0] / grid[1]))
                if error < min_error:
                    best_grid = grid
                    min_error = error

            refine_size = self.get_refine_size(
                original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
            )

            refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
            patches = self.split_to_patches(refine_image, best_grid)

        return source_image, patches, best_grid

    def get_grid_placeholder(self, grid):
        if grid is None:
            return ""
        image_placeholder = (
            self.im_start_token 
            + self.unk_token * self.image_feature_size
            + self.im_end_token
        )

        cols = grid[0]
        rows = grid[1]
        slices = []
        for i in range(rows):
            lines = []
            for j in range(cols):
                lines.append(image_placeholder)
            slices.append("".join(lines))
            
        slice_placeholder = self.slice_start_token + "\n".join(slices) + self.slice_end_token
        return slice_placeholder

    def get_sliced_images(self, image):
        slice_images = []

        source_image, patches, sliced_grid = self.slice_image(
            image,
            self.max_slice_nums,  # default: 9
            self.scale_resolution,  # default: 448
            self.patch_size  # default: 14
        )
        slice_images.append(source_image)

        if len(patches) > 0:
            for i in range(len(patches)):
                for j in range(len(patches[0])):
                    slice_images.append(patches[i][j])
        return slice_images

    def get_sliced_grid(self, image_size):
        original_width, original_height = image_size
        log_ratio = math.log(original_width / original_height)
        ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
        multiple = min(math.ceil(ratio), self.max_slice_nums)
        if multiple <= 1:
            return None
        candidate_split_grids_nums = []
        for i in [multiple - 1, multiple, multiple + 1]:
            if i == 1 or i > self.max_slice_nums:
                continue
            candidate_split_grids_nums.append(i)
        
        candidate_grids = []
        for split_grids_nums in candidate_split_grids_nums:
            m = 1
            while m <= split_grids_nums:
                if split_grids_nums % m == 0:
                    candidate_grids.append([m, split_grids_nums // m])
                m += 1

        best_grid = [1, 1]
        min_error = float("inf")
        for grid in candidate_grids:
            error = abs(log_ratio - math.log(grid[0] / grid[1]))
            if error < min_error:
                best_grid = grid
                min_error = error
        
        return best_grid

    def get_slice_image_placeholder(self, image_size):
        grid = self.get_sliced_grid(image_size=image_size)
        return (
            self.im_start_token 
            + self.unk_token * self.image_feature_size 
            + self.im_end_token
        ) + self.get_grid_placeholder(grid=grid)

    def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
        """
        Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
        needed.

        Args:
            image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
                The image to convert to the PIL Image format.
            rescale (`bool`, *optional*):
                Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
                default to `True` if the image type is a floating type, `False` otherwise.
        """
        if isinstance(image, PIL.Image.Image):
            return image
        if is_torch_tensor(image):
            image = image.numpy()

        if isinstance(image, np.ndarray):
            if rescale is None:
                # rescale default to the array being of floating type.
                rescale = isinstance(image.flat[0], np.floating)
            # If the channel as been moved to first dim, we put it back at the end.
            if image.ndim == 3 and image.shape[0] in [1, 3]:
                image = image.transpose(1, 2, 0)
            if rescale:
                image = image * 255
            image = image.astype(np.uint8)
            return PIL.Image.fromarray(image)
        return image

    def reshape_by_patch(self, image):
        """
        :param image: shape [3, H, W]
        :param patch_size:
        :return: [3, patch_size, HW/patch_size]
        """
        image = torch.from_numpy(image)
        patch_size = self.patch_size
        patches = torch.nn.functional.unfold(
            image,
            (patch_size, patch_size),
            stride=(patch_size, patch_size)
        )

        patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
        patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
        return patches.numpy()

    def preprocess(
            self, 
            images: ImageInput,
            do_pad: Optional[bool] = True, # TODO: add pad for MiniCPM-Llama3-V-2_5
            return_tensors: Optional[Union[str, TensorType]] = None
        ) -> MiniCPMVBatchFeature:
        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )
        
        images = [self.to_pil_image(image).convert("RGB") for image in images]
        input_data_format = infer_channel_dimension_format(np.array(images[0]))

        new_images = []
        image_sizes = [image.size for image in images]
        tgt_sizes = []
        for image in images:
            image_patches = self.get_sliced_images(image)
            image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
            image_patches = [
                self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
                    for image in image_patches
            ]
            image_patches = [
                to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format) 
                    for image in image_patches
            ]
            for slice_image in image_patches:
                new_images.append(self.reshape_by_patch(slice_image))
                tgt_sizes.append(np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size)))

        if tgt_sizes:
            tgt_sizes = np.vstack(tgt_sizes)
        return MiniCPMVBatchFeature(
            data={"pixel_values": [new_images], "image_sizes": [image_sizes], "tgt_sizes": [tgt_sizes]}, tensor_type=return_tensors
        )

AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)