hezhihui
commited on
Commit
•
b07c810
1
Parent(s):
52e5139
add processor & image processor
Browse files- configuration.json +1 -0
- image_processing_minicpmv.py +402 -0
- modeling_minicpmv.py +66 -425
- preprocessor_config.json +20 -0
- processing_minicpmv.py +247 -0
- resampler.py +6 -655
- tokenization_minicpmv_fast.py +51 -0
- tokenizer_config.json +3 -3
configuration.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"framework":"Pytorch","task":"multimodal-dialogue"}
|
image_processing_minicpmv.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union, Dict, Any
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
import PIL.Image
|
6 |
+
import PIL.ImageSequence
|
7 |
+
import numpy as np
|
8 |
+
import PIL
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
|
12 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
13 |
+
from transformers import AutoImageProcessor
|
14 |
+
from transformers.image_transforms import to_channel_dimension_format
|
15 |
+
from transformers.image_utils import (
|
16 |
+
ImageInput,
|
17 |
+
make_list_of_images,
|
18 |
+
valid_images,
|
19 |
+
is_torch_tensor,
|
20 |
+
to_numpy_array,
|
21 |
+
infer_channel_dimension_format,
|
22 |
+
ChannelDimension
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def recursive_converter(converter, value):
|
27 |
+
if isinstance(value, list):
|
28 |
+
new_value = []
|
29 |
+
for v in value:
|
30 |
+
new_value += [recursive_converter(converter, v)]
|
31 |
+
return new_value
|
32 |
+
else:
|
33 |
+
return converter(value)
|
34 |
+
|
35 |
+
|
36 |
+
class MiniCPMVBatchFeature(BatchFeature):
|
37 |
+
r"""
|
38 |
+
Extend from BatchFeature for supporting various image size
|
39 |
+
"""
|
40 |
+
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
|
41 |
+
super().__init__(data)
|
42 |
+
self.convert_to_tensors(tensor_type=tensor_type)
|
43 |
+
|
44 |
+
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
|
45 |
+
if tensor_type is None:
|
46 |
+
return self
|
47 |
+
|
48 |
+
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
|
49 |
+
|
50 |
+
def converter(value):
|
51 |
+
try:
|
52 |
+
if not is_tensor(value):
|
53 |
+
tensor = as_tensor(value)
|
54 |
+
return tensor
|
55 |
+
except: # noqa E722
|
56 |
+
if key == "overflowing_values":
|
57 |
+
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
|
58 |
+
raise ValueError(
|
59 |
+
"Unable to create tensor, you should probably activate padding "
|
60 |
+
"with 'padding=True' to have batched tensors with the same length."
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
for key, value in self.items():
|
65 |
+
self[key] = recursive_converter(converter, value)
|
66 |
+
return self
|
67 |
+
|
68 |
+
def to(self, *args, **kwargs) -> "MiniCPMVBatchFeature":
|
69 |
+
requires_backends(self, ["torch"])
|
70 |
+
import torch
|
71 |
+
|
72 |
+
def cast_tensor(v):
|
73 |
+
# check if v is a floating point
|
74 |
+
if torch.is_floating_point(v):
|
75 |
+
# cast and send to device
|
76 |
+
return v.to(*args, **kwargs)
|
77 |
+
elif device is not None:
|
78 |
+
return v.to(device=device)
|
79 |
+
else:
|
80 |
+
return v
|
81 |
+
|
82 |
+
new_data = {}
|
83 |
+
device = kwargs.get("device")
|
84 |
+
# Check if the args are a device or a dtype
|
85 |
+
if device is None and len(args) > 0:
|
86 |
+
# device should be always the first argument
|
87 |
+
arg = args[0]
|
88 |
+
if is_torch_dtype(arg):
|
89 |
+
# The first argument is a dtype
|
90 |
+
pass
|
91 |
+
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
|
92 |
+
device = arg
|
93 |
+
else:
|
94 |
+
# it's something else
|
95 |
+
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
|
96 |
+
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
|
97 |
+
for k, v in self.items():
|
98 |
+
new_data[k] = recursive_converter(cast_tensor, v)
|
99 |
+
self.data = new_data
|
100 |
+
return self
|
101 |
+
|
102 |
+
|
103 |
+
class MiniCPMVImageProcessor(BaseImageProcessor):
|
104 |
+
model_input_names = ["pixel_values"]
|
105 |
+
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
max_slice_nums=9,
|
109 |
+
scale_resolution=448,
|
110 |
+
patch_size=14,
|
111 |
+
**kwargs):
|
112 |
+
super().__init__(**kwargs)
|
113 |
+
self.max_slice_nums = max_slice_nums
|
114 |
+
self.scale_resolution = scale_resolution
|
115 |
+
self.patch_size = patch_size
|
116 |
+
self.image_feature_size = kwargs.pop("image_feature_size", 64)
|
117 |
+
self.im_start_token = kwargs.pop("im_start", "<image>")
|
118 |
+
self.im_end_token = kwargs.pop("im_end", "</image>")
|
119 |
+
self.slice_start_token = kwargs.pop("slice_start", "<slice>")
|
120 |
+
self.slice_end_token = kwargs.pop("slice_end", "</slice>")
|
121 |
+
self.unk_token = kwargs.pop("unk", "<unk>")
|
122 |
+
self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
|
123 |
+
self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
|
124 |
+
self.version = kwargs.pop("version", 2.0)
|
125 |
+
|
126 |
+
def ensure_divide(self, length, patch_size):
|
127 |
+
return max(round(length / patch_size) * patch_size, patch_size)
|
128 |
+
|
129 |
+
def find_best_resize(self,
|
130 |
+
original_size,
|
131 |
+
scale_resolution,
|
132 |
+
patch_size,
|
133 |
+
allow_upscale=False):
|
134 |
+
width, height = original_size
|
135 |
+
if (width * height >
|
136 |
+
scale_resolution * scale_resolution) or allow_upscale:
|
137 |
+
r = width / height
|
138 |
+
height = int(scale_resolution / math.sqrt(r))
|
139 |
+
width = int(height * r)
|
140 |
+
best_width = self.ensure_divide(width, patch_size)
|
141 |
+
best_height = self.ensure_divide(height, patch_size)
|
142 |
+
return (best_width, best_height)
|
143 |
+
|
144 |
+
def get_refine_size(self,
|
145 |
+
original_size,
|
146 |
+
grid,
|
147 |
+
scale_resolution,
|
148 |
+
patch_size,
|
149 |
+
allow_upscale=False):
|
150 |
+
width, height = original_size
|
151 |
+
grid_x, grid_y = grid
|
152 |
+
|
153 |
+
refine_width = self.ensure_divide(width, grid_x)
|
154 |
+
refine_height = self.ensure_divide(height, grid_y)
|
155 |
+
|
156 |
+
grid_width = refine_width / grid_x
|
157 |
+
grid_height = refine_height / grid_y
|
158 |
+
|
159 |
+
best_grid_size = self.find_best_resize((grid_width, grid_height),
|
160 |
+
scale_resolution,
|
161 |
+
patch_size,
|
162 |
+
allow_upscale=allow_upscale)
|
163 |
+
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
164 |
+
return refine_size
|
165 |
+
|
166 |
+
def split_to_patches(self, image, grid):
|
167 |
+
patches = []
|
168 |
+
width, height = image.size
|
169 |
+
grid_x = int(width / grid[0])
|
170 |
+
grid_y = int(height / grid[1])
|
171 |
+
for i in range(0, height, grid_y):
|
172 |
+
images = []
|
173 |
+
for j in range(0, width, grid_x):
|
174 |
+
box = (j, i, j + grid_x, i + grid_y)
|
175 |
+
patch = image.crop(box)
|
176 |
+
images.append(patch)
|
177 |
+
patches.append(images)
|
178 |
+
return patches
|
179 |
+
|
180 |
+
def slice_image(
|
181 |
+
self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
182 |
+
):
|
183 |
+
original_size = image.size
|
184 |
+
original_width, original_height = original_size
|
185 |
+
log_ratio = math.log(original_width / original_height)
|
186 |
+
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
187 |
+
multiple = min(math.ceil(ratio), max_slice_nums)
|
188 |
+
|
189 |
+
source_image = None
|
190 |
+
best_grid = None
|
191 |
+
patches = []
|
192 |
+
|
193 |
+
if multiple <= 1 or never_split:
|
194 |
+
# dont need to slice, upsample
|
195 |
+
best_size = self.find_best_resize(
|
196 |
+
original_size, scale_resolution, patch_size, allow_upscale=True
|
197 |
+
)
|
198 |
+
source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
|
199 |
+
else:
|
200 |
+
candidate_split_grids_nums = []
|
201 |
+
for i in [multiple - 1, multiple, multiple + 1]:
|
202 |
+
if i == 1 or i > max_slice_nums:
|
203 |
+
continue
|
204 |
+
candidate_split_grids_nums.append(i)
|
205 |
+
|
206 |
+
# source image, down-sampling and ensure divided by patch_size
|
207 |
+
best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
|
208 |
+
source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
|
209 |
+
candidate_grids = []
|
210 |
+
|
211 |
+
# find best grid
|
212 |
+
for split_grids_nums in candidate_split_grids_nums:
|
213 |
+
m = 1
|
214 |
+
while m <= split_grids_nums:
|
215 |
+
if split_grids_nums % m == 0:
|
216 |
+
candidate_grids.append([m, split_grids_nums // m])
|
217 |
+
m += 1
|
218 |
+
|
219 |
+
best_grid = [1, 1]
|
220 |
+
min_error = float("inf")
|
221 |
+
for grid in candidate_grids:
|
222 |
+
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
223 |
+
if error < min_error:
|
224 |
+
best_grid = grid
|
225 |
+
min_error = error
|
226 |
+
|
227 |
+
refine_size = self.get_refine_size(
|
228 |
+
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
229 |
+
)
|
230 |
+
|
231 |
+
refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
|
232 |
+
patches = self.split_to_patches(refine_image, best_grid)
|
233 |
+
|
234 |
+
return source_image, patches, best_grid
|
235 |
+
|
236 |
+
def get_grid_placeholder(self, grid):
|
237 |
+
if grid is None:
|
238 |
+
return ""
|
239 |
+
image_placeholder = (
|
240 |
+
self.im_start_token
|
241 |
+
+ self.unk_token * self.image_feature_size
|
242 |
+
+ self.im_end_token
|
243 |
+
)
|
244 |
+
|
245 |
+
cols = grid[0]
|
246 |
+
rows = grid[1]
|
247 |
+
slices = []
|
248 |
+
for i in range(rows):
|
249 |
+
lines = []
|
250 |
+
for j in range(cols):
|
251 |
+
lines.append(image_placeholder)
|
252 |
+
slices.append("".join(lines))
|
253 |
+
|
254 |
+
slice_placeholder = self.slice_start_token + "\n".join(slices) + self.slice_end_token
|
255 |
+
return slice_placeholder
|
256 |
+
|
257 |
+
def get_sliced_images(self, image):
|
258 |
+
slice_images = []
|
259 |
+
|
260 |
+
source_image, patches, sliced_grid = self.slice_image(
|
261 |
+
image,
|
262 |
+
self.max_slice_nums, # default: 9
|
263 |
+
self.scale_resolution, # default: 448
|
264 |
+
self.patch_size # default: 14
|
265 |
+
)
|
266 |
+
slice_images.append(source_image)
|
267 |
+
|
268 |
+
if len(patches) > 0:
|
269 |
+
for i in range(len(patches)):
|
270 |
+
for j in range(len(patches[0])):
|
271 |
+
slice_images.append(patches[i][j])
|
272 |
+
return slice_images
|
273 |
+
|
274 |
+
def get_sliced_grid(self, image_size):
|
275 |
+
original_width, original_height = image_size
|
276 |
+
log_ratio = math.log(original_width / original_height)
|
277 |
+
ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
|
278 |
+
multiple = min(math.ceil(ratio), self.max_slice_nums)
|
279 |
+
if multiple <= 1:
|
280 |
+
return None
|
281 |
+
candidate_split_grids_nums = []
|
282 |
+
for i in [multiple - 1, multiple, multiple + 1]:
|
283 |
+
if i == 1 or i > self.max_slice_nums:
|
284 |
+
continue
|
285 |
+
candidate_split_grids_nums.append(i)
|
286 |
+
|
287 |
+
candidate_grids = []
|
288 |
+
for split_grids_nums in candidate_split_grids_nums:
|
289 |
+
m = 1
|
290 |
+
while m <= split_grids_nums:
|
291 |
+
if split_grids_nums % m == 0:
|
292 |
+
candidate_grids.append([m, split_grids_nums // m])
|
293 |
+
m += 1
|
294 |
+
|
295 |
+
best_grid = [1, 1]
|
296 |
+
min_error = float("inf")
|
297 |
+
for grid in candidate_grids:
|
298 |
+
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
299 |
+
if error < min_error:
|
300 |
+
best_grid = grid
|
301 |
+
min_error = error
|
302 |
+
|
303 |
+
return best_grid
|
304 |
+
|
305 |
+
def get_slice_image_placeholder(self, image_size):
|
306 |
+
grid = self.get_sliced_grid(image_size=image_size)
|
307 |
+
return (
|
308 |
+
self.im_start_token
|
309 |
+
+ self.unk_token * self.image_feature_size
|
310 |
+
+ self.im_end_token
|
311 |
+
) + self.get_grid_placeholder(grid=grid)
|
312 |
+
|
313 |
+
def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
|
314 |
+
"""
|
315 |
+
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
|
316 |
+
needed.
|
317 |
+
|
318 |
+
Args:
|
319 |
+
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
|
320 |
+
The image to convert to the PIL Image format.
|
321 |
+
rescale (`bool`, *optional*):
|
322 |
+
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
|
323 |
+
default to `True` if the image type is a floating type, `False` otherwise.
|
324 |
+
"""
|
325 |
+
if isinstance(image, PIL.Image.Image):
|
326 |
+
return image
|
327 |
+
if is_torch_tensor(image):
|
328 |
+
image = image.numpy()
|
329 |
+
|
330 |
+
if isinstance(image, np.ndarray):
|
331 |
+
if rescale is None:
|
332 |
+
# rescale default to the array being of floating type.
|
333 |
+
rescale = isinstance(image.flat[0], np.floating)
|
334 |
+
# If the channel as been moved to first dim, we put it back at the end.
|
335 |
+
if image.ndim == 3 and image.shape[0] in [1, 3]:
|
336 |
+
image = image.transpose(1, 2, 0)
|
337 |
+
if rescale:
|
338 |
+
image = image * 255
|
339 |
+
image = image.astype(np.uint8)
|
340 |
+
return PIL.Image.fromarray(image)
|
341 |
+
return image
|
342 |
+
|
343 |
+
def reshape_by_patch(self, image):
|
344 |
+
"""
|
345 |
+
:param image: shape [3, H, W]
|
346 |
+
:param patch_size:
|
347 |
+
:return: [3, patch_size, HW/patch_size]
|
348 |
+
"""
|
349 |
+
image = torch.from_numpy(image)
|
350 |
+
patch_size = self.patch_size
|
351 |
+
patches = torch.nn.functional.unfold(
|
352 |
+
image,
|
353 |
+
(patch_size, patch_size),
|
354 |
+
stride=(patch_size, patch_size)
|
355 |
+
)
|
356 |
+
|
357 |
+
patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
|
358 |
+
patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
|
359 |
+
return patches.numpy()
|
360 |
+
|
361 |
+
def preprocess(
|
362 |
+
self,
|
363 |
+
images: ImageInput,
|
364 |
+
do_pad: Optional[bool] = True, # TODO: add pad for MiniCPM-Llama3-V-2_5
|
365 |
+
return_tensors: Optional[Union[str, TensorType]] = None
|
366 |
+
) -> MiniCPMVBatchFeature:
|
367 |
+
images = make_list_of_images(images)
|
368 |
+
|
369 |
+
if not valid_images(images):
|
370 |
+
raise ValueError(
|
371 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
372 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
373 |
+
)
|
374 |
+
|
375 |
+
images = [self.to_pil_image(image).convert("RGB") for image in images]
|
376 |
+
input_data_format = infer_channel_dimension_format(np.array(images[0]))
|
377 |
+
|
378 |
+
new_images = []
|
379 |
+
image_sizes = [image.size for image in images]
|
380 |
+
tgt_sizes = []
|
381 |
+
for image in images:
|
382 |
+
image_patches = self.get_sliced_images(image)
|
383 |
+
image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
|
384 |
+
image_patches = [
|
385 |
+
self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
|
386 |
+
for image in image_patches
|
387 |
+
]
|
388 |
+
image_patches = [
|
389 |
+
to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
|
390 |
+
for image in image_patches
|
391 |
+
]
|
392 |
+
for slice_image in image_patches:
|
393 |
+
new_images.append(self.reshape_by_patch(slice_image))
|
394 |
+
tgt_sizes.append(np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size)))
|
395 |
+
|
396 |
+
if tgt_sizes:
|
397 |
+
tgt_sizes = np.vstack(tgt_sizes)
|
398 |
+
return MiniCPMVBatchFeature(
|
399 |
+
data={"pixel_values": new_images, "image_sizes": image_sizes, "tgt_sizes": tgt_sizes}, tensor_type=return_tensors
|
400 |
+
)
|
401 |
+
|
402 |
+
AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)
|
modeling_minicpmv.py
CHANGED
@@ -9,6 +9,7 @@ from PIL import Image
|
|
9 |
from torchvision import transforms
|
10 |
from transformers import LlamaTokenizer, LlamaPreTrainedModel, LlamaForCausalLM, AutoModel, PreTrainedTokenizerFast, TextIteratorStreamer
|
11 |
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
|
|
|
12 |
|
13 |
from .configuration_minicpm import MiniCPMVConfig
|
14 |
from .resampler import Resampler
|
@@ -42,13 +43,13 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
42 |
|
43 |
return model
|
44 |
|
45 |
-
def init_resampler(self, embed_dim, vision_dim
|
46 |
return Resampler(
|
47 |
num_queries=self.config.query_num,
|
48 |
embed_dim=embed_dim,
|
49 |
num_heads=embed_dim // 128,
|
50 |
kv_dim=vision_dim,
|
51 |
-
adaptive=True
|
52 |
)
|
53 |
|
54 |
def init_transform(self):
|
@@ -60,17 +61,29 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
60 |
),
|
61 |
]
|
62 |
)
|
63 |
-
|
64 |
def get_input_embeddings(self):
|
65 |
return self.llm.get_input_embeddings()
|
66 |
|
67 |
def set_input_embeddings(self, value):
|
68 |
self.llm.embed_tokens = value
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def get_vllm_embedding(self, data):
|
71 |
if 'vision_hidden_states' not in data:
|
72 |
-
dtype = self.
|
73 |
-
device = self.
|
74 |
tgt_sizes = data['tgt_sizes']
|
75 |
pixel_values_list = data['pixel_values']
|
76 |
vision_hidden_states = []
|
@@ -78,9 +91,7 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
78 |
img_cnt = []
|
79 |
for pixel_values in pixel_values_list:
|
80 |
img_cnt.append(len(pixel_values))
|
81 |
-
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
|
82 |
-
|
83 |
-
# exist image
|
84 |
if all_pixel_values:
|
85 |
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
|
86 |
|
@@ -107,7 +118,6 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
107 |
single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
|
108 |
single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
|
109 |
single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
|
110 |
-
|
111 |
vision_embedding.append(single_vision_embedding)
|
112 |
vision_embedding = torch.vstack(vision_embedding)
|
113 |
|
@@ -148,18 +158,19 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
148 |
cur_vs_hs = vision_hidden_states[i]
|
149 |
if len(cur_vs_hs) > 0:
|
150 |
cur_vllm_emb = vllm_embedding[i]
|
151 |
-
cur_image_bound = data['
|
152 |
if len(cur_image_bound) > 0:
|
153 |
image_indices = torch.stack(
|
154 |
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
|
155 |
).to(vllm_embedding.device)
|
|
|
156 |
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
157 |
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
|
158 |
elif self.training:
|
159 |
cur_vllm_emb += cur_vs_hs[0].mean() * 0
|
160 |
-
|
161 |
-
return vllm_embedding, vision_hidden_states
|
162 |
|
|
|
|
|
163 |
def forward(self, data, **kwargs):
|
164 |
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
165 |
position_ids = data["position_ids"]
|
@@ -173,47 +184,18 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
173 |
**kwargs
|
174 |
)
|
175 |
|
176 |
-
def
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
|
187 |
-
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
|
188 |
-
image_bound = torch.hstack(
|
189 |
-
[
|
190 |
-
image_start_tokens[:valid_image_nums].unsqueeze(-1),
|
191 |
-
image_end_tokens[:valid_image_nums].unsqueeze(-1),
|
192 |
-
]
|
193 |
-
)
|
194 |
-
|
195 |
-
model_input = {}
|
196 |
-
model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
|
197 |
-
model_input["image_bound"] = image_bound
|
198 |
-
|
199 |
-
return model_input
|
200 |
-
|
201 |
-
def _process_list(
|
202 |
-
self, tokenizer, input_id_list, max_inp_length: Optional[int] = None
|
203 |
-
):
|
204 |
-
pad_keys = ["input_ids"]
|
205 |
-
input_tensors = []
|
206 |
-
for input_ids in input_id_list:
|
207 |
-
input_tensors.append(
|
208 |
-
self._convert_to_tensors(tokenizer, input_ids, max_inp_length)
|
209 |
-
)
|
210 |
-
padded = {}
|
211 |
-
for key in pad_keys:
|
212 |
-
padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
|
213 |
-
padded["image_bound"] = [i["image_bound"] for i in input_tensors]
|
214 |
-
return padded
|
215 |
|
216 |
-
def _decode(self, inputs_embeds, tokenizer, **kwargs):
|
217 |
terminators = [
|
218 |
tokenizer.eos_token_id,
|
219 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
@@ -224,7 +206,9 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
224 |
eos_token_id=terminators,
|
225 |
**kwargs
|
226 |
)
|
227 |
-
|
|
|
|
|
228 |
|
229 |
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
230 |
terminators = [
|
@@ -245,93 +229,20 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
245 |
|
246 |
return streamer
|
247 |
|
248 |
-
def _decode_text(self, result_ids, tokenizer):
|
249 |
-
result_text = []
|
250 |
-
for result in result_ids:
|
251 |
-
result = result[result != 0]
|
252 |
-
if result[0] == tokenizer.bos_id:
|
253 |
-
result = result[1:]
|
254 |
-
if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
|
255 |
-
result = result[:-1]
|
256 |
-
result_text.append(tokenizer.decode(result).strip())
|
257 |
-
return result_text
|
258 |
-
|
259 |
-
def slice_image(self, image):
|
260 |
-
return slice_image(
|
261 |
-
image,
|
262 |
-
self.config.slice_config.max_slice_nums,
|
263 |
-
self.config.slice_config.scale_resolution,
|
264 |
-
self.config.slice_config.patch_size,
|
265 |
-
)
|
266 |
-
|
267 |
-
def get_slice_image_placeholder(self, image, tokenizer):
|
268 |
-
image_placeholder = (
|
269 |
-
tokenizer.im_start
|
270 |
-
+ tokenizer.unk_token * self.config.query_num
|
271 |
-
+ tokenizer.im_end
|
272 |
-
)
|
273 |
-
|
274 |
-
slice_images = []
|
275 |
-
|
276 |
-
source_image, patches, best_grid = slice_image(
|
277 |
-
image,
|
278 |
-
self.config.slice_config.max_slice_nums,
|
279 |
-
self.config.slice_config.scale_resolution,
|
280 |
-
self.config.slice_config.patch_size,
|
281 |
-
)
|
282 |
-
|
283 |
-
slice_images.append(source_image)
|
284 |
-
final_placeholder = image_placeholder
|
285 |
-
|
286 |
-
if len(patches) > 0:
|
287 |
-
for i in range(len(patches)):
|
288 |
-
for j in range(len(patches[0])):
|
289 |
-
slice_images.append(patches[i][j])
|
290 |
-
|
291 |
-
final_placeholder += get_grid_placeholder(
|
292 |
-
tokenizer, best_grid, self.config.query_num
|
293 |
-
)
|
294 |
-
|
295 |
-
return slice_images, final_placeholder
|
296 |
-
|
297 |
-
def reshape_by_patch(self, image_tensor):
|
298 |
-
"""
|
299 |
-
:param image_tensor: shape [3, H, W]
|
300 |
-
:param patch_size:
|
301 |
-
:return: [3, patch_size, HW/patch_size]
|
302 |
-
"""
|
303 |
-
patch_size = self.config.patch_size
|
304 |
-
patches = torch.nn.functional.unfold(
|
305 |
-
image_tensor,
|
306 |
-
(patch_size, patch_size),
|
307 |
-
stride=(patch_size, patch_size)
|
308 |
-
)
|
309 |
-
|
310 |
-
patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
|
311 |
-
patches = patches.permute(0, 1, 3, 2).reshape(image_tensor.size(0), patch_size, -1)
|
312 |
-
return patches
|
313 |
-
|
314 |
def generate(
|
315 |
self,
|
316 |
-
|
317 |
-
img_list=None,
|
318 |
-
tgt_sizes=None,
|
319 |
tokenizer=None,
|
320 |
-
max_inp_length: Optional[int] = None,
|
321 |
vision_hidden_states=None,
|
322 |
-
return_vision_hidden_states=False,
|
323 |
stream=False,
|
324 |
**kwargs
|
325 |
):
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
if img_list
|
330 |
img_list = [[] for i in range(bs)]
|
331 |
assert bs == len(img_list)
|
332 |
-
|
333 |
-
model_inputs = self._process_list(tokenizer, input_id_list, max_inp_length)
|
334 |
-
|
335 |
if vision_hidden_states is None:
|
336 |
pixel_values = []
|
337 |
for i in range(bs):
|
@@ -347,19 +258,17 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
347 |
else:
|
348 |
model_inputs["vision_hidden_states"] = vision_hidden_states
|
349 |
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
) = self.get_vllm_embedding(model_inputs)
|
355 |
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
return result, vision_hidden_states
|
363 |
|
364 |
return result
|
365 |
|
@@ -368,6 +277,7 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
368 |
image,
|
369 |
msgs,
|
370 |
tokenizer,
|
|
|
371 |
vision_hidden_states=None,
|
372 |
max_new_tokens=1024,
|
373 |
sampling=True,
|
@@ -376,61 +286,22 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
376 |
stream=False,
|
377 |
**kwargs
|
378 |
):
|
|
|
|
|
379 |
if isinstance(msgs, str):
|
380 |
msgs = json.loads(msgs)
|
381 |
|
382 |
-
|
383 |
-
assert len(copy_msgs) > 0, 'msgs is empty'
|
384 |
assert sampling or not stream, 'if use stream mode, make sure sampling=True'
|
385 |
|
386 |
-
if image is not None and isinstance(
|
387 |
-
|
388 |
-
|
389 |
-
images = []
|
390 |
-
tgt_sizes = []
|
391 |
-
for i, msg in enumerate(copy_msgs):
|
392 |
-
role = msg["role"]
|
393 |
-
content = msg["content"]
|
394 |
-
assert role in ["user", "assistant"]
|
395 |
-
if i == 0:
|
396 |
-
assert role == "user", "The role of first msg should be user"
|
397 |
-
if isinstance(content, str):
|
398 |
-
content = [content]
|
399 |
-
|
400 |
-
cur_msgs = []
|
401 |
-
for c in content:
|
402 |
-
if isinstance(c, Image.Image):
|
403 |
-
image = c
|
404 |
-
if self.config.slice_mode:
|
405 |
-
slice_images, image_placeholder = self.get_slice_image_placeholder(
|
406 |
-
image, tokenizer
|
407 |
-
)
|
408 |
-
cur_msgs.append(image_placeholder)
|
409 |
-
for slice_image in slice_images:
|
410 |
-
slice_image = self.transform(slice_image)
|
411 |
-
H, W = slice_image.shape[1:]
|
412 |
-
images.append(self.reshape_by_patch(slice_image))
|
413 |
-
tgt_sizes.append(torch.Tensor([H // self.config.patch_size, W // self.config.patch_size]).type(torch.int32))
|
414 |
-
else:
|
415 |
-
images.append(self.transform(image))
|
416 |
-
cur_msgs.append(
|
417 |
-
tokenizer.im_start
|
418 |
-
+ tokenizer.unk_token * self.config.query_num
|
419 |
-
+ tokenizer.im_end
|
420 |
-
)
|
421 |
-
elif isinstance(c, str):
|
422 |
-
cur_msgs.append(c)
|
423 |
-
|
424 |
-
|
425 |
-
msg['content'] = '\n'.join(cur_msgs)
|
426 |
-
if tgt_sizes:
|
427 |
-
tgt_sizes = torch.vstack(tgt_sizes)
|
428 |
-
|
429 |
if system_prompt:
|
430 |
sys_msg = {'role': 'system', 'content': system_prompt}
|
431 |
-
copy_msgs = [sys_msg] + copy_msgs
|
432 |
|
433 |
-
|
|
|
434 |
|
435 |
if sampling:
|
436 |
generation_config = {
|
@@ -449,21 +320,17 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
449 |
generation_config.update(
|
450 |
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
|
451 |
)
|
452 |
-
|
453 |
with torch.inference_mode():
|
454 |
-
res
|
455 |
-
|
456 |
-
max_inp_length=max_inp_length,
|
457 |
-
img_list=[images],
|
458 |
-
tgt_sizes=[tgt_sizes],
|
459 |
tokenizer=tokenizer,
|
460 |
max_new_tokens=max_new_tokens,
|
461 |
vision_hidden_states=vision_hidden_states,
|
462 |
-
return_vision_hidden_states=True,
|
463 |
stream=stream,
|
|
|
464 |
**generation_config
|
465 |
)
|
466 |
-
|
467 |
if stream:
|
468 |
def stream_gen():
|
469 |
for text in res:
|
@@ -474,229 +341,3 @@ class MiniCPMV(MiniCPMVPreTrainedModel):
|
|
474 |
else:
|
475 |
answer = res[0]
|
476 |
return answer
|
477 |
-
|
478 |
-
|
479 |
-
class PreTrainedTokenizerFastWrapper(PreTrainedTokenizerFast):
|
480 |
-
def __init__(self, **kwargs):
|
481 |
-
super().__init__(**kwargs)
|
482 |
-
self.eot_token = "<|eot_id|>"
|
483 |
-
self.im_start = "<image>"
|
484 |
-
self.im_end = "</image>"
|
485 |
-
self.ref_start = "<ref>"
|
486 |
-
self.ref_end = "</ref>"
|
487 |
-
self.box_start = "<box>"
|
488 |
-
self.box_end = "</box>"
|
489 |
-
self.quad_start = "<quad>"
|
490 |
-
self.quad_end = "</quad>"
|
491 |
-
self.slice_start = "<slice>"
|
492 |
-
self.slice_end = "</slice>"
|
493 |
-
|
494 |
-
@property
|
495 |
-
def eos_id(self):
|
496 |
-
return self.eos_token_id
|
497 |
-
|
498 |
-
@property
|
499 |
-
def bos_id(self):
|
500 |
-
return self.bos_token_id
|
501 |
-
|
502 |
-
@property
|
503 |
-
def unk_id(self):
|
504 |
-
return self.unk_token_id
|
505 |
-
|
506 |
-
@property
|
507 |
-
def eot_id(self):
|
508 |
-
return self.convert_tokens_to_ids(self.eot_token)
|
509 |
-
|
510 |
-
@property
|
511 |
-
def im_start_id(self):
|
512 |
-
return self.convert_tokens_to_ids(self.im_start)
|
513 |
-
|
514 |
-
@property
|
515 |
-
def im_end_id(self):
|
516 |
-
return self.convert_tokens_to_ids(self.im_end)
|
517 |
-
|
518 |
-
@staticmethod
|
519 |
-
def escape(text: str) -> str:
|
520 |
-
return text
|
521 |
-
|
522 |
-
@staticmethod
|
523 |
-
def unescape(text: str) -> str:
|
524 |
-
return text
|
525 |
-
|
526 |
-
|
527 |
-
def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
|
528 |
-
items = []
|
529 |
-
if isinstance(orig_items[0][key], list):
|
530 |
-
assert isinstance(orig_items[0][key][0], torch.Tensor)
|
531 |
-
for it in orig_items:
|
532 |
-
for tr in it[key]:
|
533 |
-
items.append({key: tr})
|
534 |
-
else:
|
535 |
-
assert isinstance(orig_items[0][key], torch.Tensor)
|
536 |
-
items = orig_items
|
537 |
-
|
538 |
-
batch_size = len(items)
|
539 |
-
shape = items[0][key].shape
|
540 |
-
dim = len(shape)
|
541 |
-
assert dim <= 3
|
542 |
-
if max_length is None:
|
543 |
-
max_length = 0
|
544 |
-
max_length = max(max_length, max(item[key].shape[-1] for item in items))
|
545 |
-
min_length = min(item[key].shape[-1] for item in items)
|
546 |
-
dtype = items[0][key].dtype
|
547 |
-
|
548 |
-
if dim == 1:
|
549 |
-
return torch.cat([item[key] for item in items], dim=0)
|
550 |
-
elif dim == 2:
|
551 |
-
if max_length == min_length:
|
552 |
-
return torch.cat([item[key] for item in items], dim=0)
|
553 |
-
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
|
554 |
-
else:
|
555 |
-
tensor = (
|
556 |
-
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
|
557 |
-
+ padding_value
|
558 |
-
)
|
559 |
-
|
560 |
-
for i, item in enumerate(items):
|
561 |
-
if dim == 2:
|
562 |
-
if padding_side == "left":
|
563 |
-
tensor[i, -len(item[key][0]) :] = item[key][0].clone()
|
564 |
-
else:
|
565 |
-
tensor[i, : len(item[key][0])] = item[key][0].clone()
|
566 |
-
elif dim == 3:
|
567 |
-
if padding_side == "left":
|
568 |
-
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
|
569 |
-
else:
|
570 |
-
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
|
571 |
-
|
572 |
-
return tensor
|
573 |
-
|
574 |
-
|
575 |
-
def slice_image(
|
576 |
-
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
577 |
-
):
|
578 |
-
original_size = image.size
|
579 |
-
original_width, original_height = original_size
|
580 |
-
log_ratio = math.log(original_width / original_height)
|
581 |
-
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
582 |
-
multiple = min(math.ceil(ratio), max_slice_nums)
|
583 |
-
|
584 |
-
source_image = None
|
585 |
-
best_grid = None
|
586 |
-
patches = []
|
587 |
-
|
588 |
-
if multiple <= 1 or never_split:
|
589 |
-
# dont need to slice, upsample
|
590 |
-
best_size = find_best_resize(
|
591 |
-
original_size, scale_resolution, patch_size, allow_upscale=True
|
592 |
-
)
|
593 |
-
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
594 |
-
else:
|
595 |
-
candidate_split_grids_nums = []
|
596 |
-
for i in [multiple - 1, multiple, multiple + 1]:
|
597 |
-
if i == 1 or i > max_slice_nums:
|
598 |
-
continue
|
599 |
-
candidate_split_grids_nums.append(i)
|
600 |
-
|
601 |
-
# source image, down-sampling and ensure divided by patch_size
|
602 |
-
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
|
603 |
-
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
604 |
-
candidate_grids = []
|
605 |
-
|
606 |
-
# find best grid
|
607 |
-
for split_grids_nums in candidate_split_grids_nums:
|
608 |
-
m = 1
|
609 |
-
while m <= split_grids_nums:
|
610 |
-
if split_grids_nums % m == 0:
|
611 |
-
candidate_grids.append([m, split_grids_nums // m])
|
612 |
-
m += 1
|
613 |
-
|
614 |
-
best_grid = [1, 1]
|
615 |
-
min_error = float("inf")
|
616 |
-
for grid in candidate_grids:
|
617 |
-
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
618 |
-
if error < min_error:
|
619 |
-
best_grid = grid
|
620 |
-
min_error = error
|
621 |
-
|
622 |
-
refine_size = get_refine_size(
|
623 |
-
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
624 |
-
)
|
625 |
-
|
626 |
-
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
|
627 |
-
patches = split_to_patches(refine_image, best_grid)
|
628 |
-
|
629 |
-
return source_image, patches, best_grid
|
630 |
-
|
631 |
-
|
632 |
-
def ensure_divide(length, patch_size):
|
633 |
-
return max(round(length / patch_size) * patch_size, patch_size)
|
634 |
-
|
635 |
-
|
636 |
-
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
|
637 |
-
width, height = original_size
|
638 |
-
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
|
639 |
-
r = width / height
|
640 |
-
height = int(scale_resolution / math.sqrt(r))
|
641 |
-
width = int(height * r)
|
642 |
-
best_width = ensure_divide(width, patch_size)
|
643 |
-
best_height = ensure_divide(height, patch_size)
|
644 |
-
return (best_width, best_height)
|
645 |
-
|
646 |
-
|
647 |
-
def get_refine_size(
|
648 |
-
original_size, grid, scale_resolution, patch_size, allow_upscale=False
|
649 |
-
):
|
650 |
-
width, height = original_size
|
651 |
-
grid_x, grid_y = grid
|
652 |
-
|
653 |
-
refine_width = ensure_divide(width, grid_x)
|
654 |
-
refine_height = ensure_divide(height, grid_y)
|
655 |
-
|
656 |
-
grid_width = refine_width / grid_x
|
657 |
-
grid_height = refine_height / grid_y
|
658 |
-
|
659 |
-
best_grid_size = find_best_resize(
|
660 |
-
(grid_width, grid_height),
|
661 |
-
scale_resolution,
|
662 |
-
patch_size,
|
663 |
-
allow_upscale=allow_upscale,
|
664 |
-
)
|
665 |
-
|
666 |
-
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
667 |
-
|
668 |
-
return refine_size
|
669 |
-
|
670 |
-
|
671 |
-
def split_to_patches(image, grid):
|
672 |
-
patches = []
|
673 |
-
width, height = image.size
|
674 |
-
grid_x = int(width / grid[0])
|
675 |
-
grid_y = int(height / grid[1])
|
676 |
-
|
677 |
-
for i in range(0, height, grid_y):
|
678 |
-
images = []
|
679 |
-
for j in range(0, width, grid_x):
|
680 |
-
box = (j, i, j + grid_x, i + grid_y)
|
681 |
-
patch = image.crop(box)
|
682 |
-
images.append(patch)
|
683 |
-
patches.append(images)
|
684 |
-
|
685 |
-
return patches
|
686 |
-
|
687 |
-
|
688 |
-
def get_grid_placeholder(tokenizer, grid, query_num):
|
689 |
-
image_placeholder = (
|
690 |
-
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
|
691 |
-
)
|
692 |
-
|
693 |
-
cols = grid[0]
|
694 |
-
rows = grid[1]
|
695 |
-
slices = []
|
696 |
-
for i in range(rows):
|
697 |
-
lines = []
|
698 |
-
for j in range(cols):
|
699 |
-
lines.append(image_placeholder)
|
700 |
-
slices.append("".join(lines))
|
701 |
-
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
|
702 |
-
return slice_placeholder
|
|
|
9 |
from torchvision import transforms
|
10 |
from transformers import LlamaTokenizer, LlamaPreTrainedModel, LlamaForCausalLM, AutoModel, PreTrainedTokenizerFast, TextIteratorStreamer
|
11 |
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
|
12 |
+
from transformers import AutoProcessor
|
13 |
|
14 |
from .configuration_minicpm import MiniCPMVConfig
|
15 |
from .resampler import Resampler
|
|
|
43 |
|
44 |
return model
|
45 |
|
46 |
+
def init_resampler(self, embed_dim, vision_dim):
|
47 |
return Resampler(
|
48 |
num_queries=self.config.query_num,
|
49 |
embed_dim=embed_dim,
|
50 |
num_heads=embed_dim // 128,
|
51 |
kv_dim=vision_dim,
|
52 |
+
adaptive=True
|
53 |
)
|
54 |
|
55 |
def init_transform(self):
|
|
|
61 |
),
|
62 |
]
|
63 |
)
|
64 |
+
|
65 |
def get_input_embeddings(self):
|
66 |
return self.llm.get_input_embeddings()
|
67 |
|
68 |
def set_input_embeddings(self, value):
|
69 |
self.llm.embed_tokens = value
|
70 |
+
|
71 |
+
def get_output_embeddings(self):
|
72 |
+
return self.llm.lm_head
|
73 |
+
|
74 |
+
def set_output_embeddings(self, new_embeddings):
|
75 |
+
self.llm.lm_head = new_embeddings
|
76 |
+
|
77 |
+
def set_decoder(self, decoder):
|
78 |
+
self.llm = decoder
|
79 |
+
|
80 |
+
def get_decoder(self):
|
81 |
+
return self.llm
|
82 |
+
|
83 |
def get_vllm_embedding(self, data):
|
84 |
if 'vision_hidden_states' not in data:
|
85 |
+
dtype = self.vpm.embeddings.position_embedding.weight.dtype
|
86 |
+
device = self.vpm.embeddings.position_embedding.weight.device
|
87 |
tgt_sizes = data['tgt_sizes']
|
88 |
pixel_values_list = data['pixel_values']
|
89 |
vision_hidden_states = []
|
|
|
91 |
img_cnt = []
|
92 |
for pixel_values in pixel_values_list:
|
93 |
img_cnt.append(len(pixel_values))
|
94 |
+
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values]) # exist image
|
|
|
|
|
95 |
if all_pixel_values:
|
96 |
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
|
97 |
|
|
|
118 |
single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
|
119 |
single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
|
120 |
single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
|
|
|
121 |
vision_embedding.append(single_vision_embedding)
|
122 |
vision_embedding = torch.vstack(vision_embedding)
|
123 |
|
|
|
158 |
cur_vs_hs = vision_hidden_states[i]
|
159 |
if len(cur_vs_hs) > 0:
|
160 |
cur_vllm_emb = vllm_embedding[i]
|
161 |
+
cur_image_bound = data['image_bounds'][i]
|
162 |
if len(cur_image_bound) > 0:
|
163 |
image_indices = torch.stack(
|
164 |
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
|
165 |
).to(vllm_embedding.device)
|
166 |
+
|
167 |
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
168 |
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
|
169 |
elif self.training:
|
170 |
cur_vllm_emb += cur_vs_hs[0].mean() * 0
|
|
|
|
|
171 |
|
172 |
+
return vllm_embedding, vision_hidden_states
|
173 |
+
|
174 |
def forward(self, data, **kwargs):
|
175 |
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
176 |
position_ids = data["position_ids"]
|
|
|
184 |
**kwargs
|
185 |
)
|
186 |
|
187 |
+
def _decode_text(self, result_ids, tokenizer):
|
188 |
+
result_text = []
|
189 |
+
for result in result_ids:
|
190 |
+
result = result[result != 0]
|
191 |
+
if result[0] == tokenizer.bos_id:
|
192 |
+
result = result[1:]
|
193 |
+
if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
|
194 |
+
result = result[:-1]
|
195 |
+
result_text.append(tokenizer.decode(result).strip())
|
196 |
+
return result_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
def _decode(self, inputs_embeds, tokenizer, decode_text=False, **kwargs):
|
199 |
terminators = [
|
200 |
tokenizer.eos_token_id,
|
201 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
|
|
206 |
eos_token_id=terminators,
|
207 |
**kwargs
|
208 |
)
|
209 |
+
if decode_text:
|
210 |
+
return self._decode_text(output, tokenizer)
|
211 |
+
return output
|
212 |
|
213 |
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
214 |
terminators = [
|
|
|
229 |
|
230 |
return streamer
|
231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
def generate(
|
233 |
self,
|
234 |
+
model_inputs,
|
|
|
|
|
235 |
tokenizer=None,
|
|
|
236 |
vision_hidden_states=None,
|
|
|
237 |
stream=False,
|
238 |
**kwargs
|
239 |
):
|
240 |
+
bs = len(model_inputs["input_ids"])
|
241 |
+
img_list = model_inputs["pixel_values"]
|
242 |
+
tgt_sizes = model_inputs["tgt_sizes"]
|
243 |
+
if img_list is None:
|
244 |
img_list = [[] for i in range(bs)]
|
245 |
assert bs == len(img_list)
|
|
|
|
|
|
|
246 |
if vision_hidden_states is None:
|
247 |
pixel_values = []
|
248 |
for i in range(bs):
|
|
|
258 |
else:
|
259 |
model_inputs["vision_hidden_states"] = vision_hidden_states
|
260 |
|
261 |
+
(
|
262 |
+
input_embeds,
|
263 |
+
vision_hidden_states,
|
264 |
+
) = self.get_vllm_embedding(model_inputs)
|
|
|
265 |
|
266 |
+
# output_ids = self._decode(input_embeds, tokenizer, **kwargs)
|
267 |
+
if stream:
|
268 |
+
kwargs.pop("decode_text")
|
269 |
+
result = self._decode_stream(input_embeds, tokenizer, **kwargs)
|
270 |
+
else:
|
271 |
+
result = self._decode(input_embeds, tokenizer, **kwargs)
|
|
|
272 |
|
273 |
return result
|
274 |
|
|
|
277 |
image,
|
278 |
msgs,
|
279 |
tokenizer,
|
280 |
+
processor=None,
|
281 |
vision_hidden_states=None,
|
282 |
max_new_tokens=1024,
|
283 |
sampling=True,
|
|
|
286 |
stream=False,
|
287 |
**kwargs
|
288 |
):
|
289 |
+
if processor is None:
|
290 |
+
processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
|
291 |
if isinstance(msgs, str):
|
292 |
msgs = json.loads(msgs)
|
293 |
|
294 |
+
assert len(msgs) > 0, 'msgs is empty'
|
|
|
295 |
assert sampling or not stream, 'if use stream mode, make sure sampling=True'
|
296 |
|
297 |
+
if image is not None and isinstance(msgs[0]['content'], str):
|
298 |
+
msgs[0]['content'] = '(<image>./</image>)\n' + msgs[0]['content']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
if system_prompt:
|
300 |
sys_msg = {'role': 'system', 'content': system_prompt}
|
301 |
+
copy_msgs = [sys_msg] + copy_msgs
|
302 |
|
303 |
+
prompt = processor.tokenizer.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
|
304 |
+
inputs = processor(prompt, [image], return_tensors="pt", max_length=max_inp_length).to(self.device)
|
305 |
|
306 |
if sampling:
|
307 |
generation_config = {
|
|
|
320 |
generation_config.update(
|
321 |
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
|
322 |
)
|
|
|
323 |
with torch.inference_mode():
|
324 |
+
res = self.generate(
|
325 |
+
inputs,
|
|
|
|
|
|
|
326 |
tokenizer=tokenizer,
|
327 |
max_new_tokens=max_new_tokens,
|
328 |
vision_hidden_states=vision_hidden_states,
|
|
|
329 |
stream=stream,
|
330 |
+
decode_text=True,
|
331 |
**generation_config
|
332 |
)
|
333 |
+
|
334 |
if stream:
|
335 |
def stream_gen():
|
336 |
for text in res:
|
|
|
341 |
else:
|
342 |
answer = res[0]
|
343 |
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"image_processor_type": "MiniCPMVImageProcessor",
|
3 |
+
"auto_map": {
|
4 |
+
"AutoProcessor": "processing_minicpmv.MiniCPMVProcessor",
|
5 |
+
"AutoImageProcessor": "image_processing_minicpmv.MiniCPMVImageProcessor"
|
6 |
+
},
|
7 |
+
"processor_class": "MiniCPMVProcessor",
|
8 |
+
"max_slice_nums": 9,
|
9 |
+
"scale_resolution": 448,
|
10 |
+
"patch_size": 14,
|
11 |
+
"image_feature_size": 96,
|
12 |
+
"im_start": "<image>",
|
13 |
+
"im_end": "</image>",
|
14 |
+
"slice_start": "<slice>",
|
15 |
+
"slice_end": "</slice>",
|
16 |
+
"unk": "<unk>",
|
17 |
+
"norm_mean": [0.5, 0.5, 0.5],
|
18 |
+
"norm_std": [0.5, 0.5, 0.5],
|
19 |
+
"version": 2.5
|
20 |
+
}
|
processing_minicpmv.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for MiniCPMV.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union, Dict, Any
|
20 |
+
import torch
|
21 |
+
import re
|
22 |
+
|
23 |
+
from transformers.image_processing_utils import BatchFeature
|
24 |
+
from transformers.image_utils import ImageInput
|
25 |
+
from transformers.processing_utils import ProcessorMixin
|
26 |
+
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
27 |
+
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
|
28 |
+
|
29 |
+
from .image_processing_minicpmv import MiniCPMVBatchFeature
|
30 |
+
|
31 |
+
|
32 |
+
class MiniCPMVProcessor(ProcessorMixin):
|
33 |
+
r"""
|
34 |
+
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
|
35 |
+
|
36 |
+
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
|
37 |
+
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
image_processor ([`MiniCPMVImageProcessor`], *optional*):
|
41 |
+
The image processor is a required input.
|
42 |
+
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
|
43 |
+
The tokenizer is a required input.
|
44 |
+
"""
|
45 |
+
attributes = ["image_processor", "tokenizer"]
|
46 |
+
image_processor_class = "AutoImageProcessor"
|
47 |
+
tokenizer_class = "AutoTokenizer"
|
48 |
+
|
49 |
+
def __init__(self, image_processor=None, tokenizer=None):
|
50 |
+
super().__init__(image_processor, tokenizer)
|
51 |
+
self.version = image_processor.version
|
52 |
+
|
53 |
+
def __call__(
|
54 |
+
self,
|
55 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
56 |
+
images: ImageInput = None,
|
57 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
58 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
59 |
+
max_length: Optional[int] = None,
|
60 |
+
do_pad: Optional[bool] = True,
|
61 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
62 |
+
) -> MiniCPMVBatchFeature:
|
63 |
+
"""
|
64 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
65 |
+
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
|
66 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
67 |
+
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
68 |
+
of the above two methods for more information.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
72 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
73 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
74 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
75 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
76 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
77 |
+
tensor. Both channels-first and channels-last formats are supported.
|
78 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
79 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
80 |
+
index) among:
|
81 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
82 |
+
sequence if provided).
|
83 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
84 |
+
acceptable input length for the model if that argument is not provided.
|
85 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
86 |
+
lengths).
|
87 |
+
max_length (`int`, *optional*):
|
88 |
+
Maximum length of the returned list and optionally padding length (see above).
|
89 |
+
do_pad (`bool`, *optional*, defaults to self.do_pad):
|
90 |
+
Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch
|
91 |
+
and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros.
|
92 |
+
truncation (`bool`, *optional*):
|
93 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
94 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
95 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
96 |
+
|
97 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
98 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
99 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
100 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
101 |
+
|
102 |
+
Returns:
|
103 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
104 |
+
|
105 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
106 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
107 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
108 |
+
`None`).
|
109 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
110 |
+
"""
|
111 |
+
if images is not None:
|
112 |
+
image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors)
|
113 |
+
return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length)
|
114 |
+
|
115 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
116 |
+
def batch_decode(self, *args, **kwargs):
|
117 |
+
"""
|
118 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
119 |
+
refer to the docstring of this method for more information.
|
120 |
+
"""
|
121 |
+
output_ids = args[0]
|
122 |
+
result_text = []
|
123 |
+
for result in output_ids:
|
124 |
+
result = result[result != 0]
|
125 |
+
if result[0] == self.tokenizer.bos_id:
|
126 |
+
result = result[1:]
|
127 |
+
if result[-1] == self.tokenizer.eos_id:
|
128 |
+
result = result[:-1]
|
129 |
+
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
|
130 |
+
return result_text
|
131 |
+
# return self.tokenizer.batch_decode(*args, **kwargs)
|
132 |
+
|
133 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
134 |
+
def decode(self, *args, **kwargs):
|
135 |
+
"""
|
136 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
137 |
+
the docstring of this method for more information.
|
138 |
+
"""
|
139 |
+
result = args[0]
|
140 |
+
result = result[result != 0]
|
141 |
+
if result[0] == self.tokenizer.bos_id:
|
142 |
+
result = result[1:]
|
143 |
+
if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
|
144 |
+
result = result[:-1]
|
145 |
+
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
|
146 |
+
|
147 |
+
def _convert(
|
148 |
+
self, input_str, max_inp_length: Optional[int] = None
|
149 |
+
):
|
150 |
+
if self.version == 2.5 or self.tokenizer.add_bos_token:
|
151 |
+
input_ids = self.tokenizer.encode(input_str)
|
152 |
+
else:
|
153 |
+
input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
|
154 |
+
if max_inp_length is not None:
|
155 |
+
input_ids = input_ids[:max_inp_length]
|
156 |
+
input_ids = torch.tensor(input_ids, dtype=torch.int32)
|
157 |
+
|
158 |
+
image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0]
|
159 |
+
image_start_tokens += 1
|
160 |
+
image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0]
|
161 |
+
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
|
162 |
+
image_bounds = torch.hstack(
|
163 |
+
[
|
164 |
+
image_start_tokens[:valid_image_nums].unsqueeze(-1),
|
165 |
+
image_end_tokens[:valid_image_nums].unsqueeze(-1),
|
166 |
+
]
|
167 |
+
)
|
168 |
+
return input_ids.unsqueeze(0), image_bounds
|
169 |
+
|
170 |
+
def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None):
|
171 |
+
if not len(images):
|
172 |
+
model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length)
|
173 |
+
return MiniCPMVBatchFeature(data={**model_inputs})
|
174 |
+
|
175 |
+
pattern = "(<image>./</image>)"
|
176 |
+
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
|
177 |
+
|
178 |
+
image_tags = re.findall(pattern, texts)
|
179 |
+
assert len(image_tags) == len(image_sizes)
|
180 |
+
text_chunks = texts.split(pattern)
|
181 |
+
final_texts = ""
|
182 |
+
for i in range(len(image_tags)):
|
183 |
+
final_texts = final_texts + text_chunks[i] + self.image_processor.get_slice_image_placeholder(image_sizes[i])
|
184 |
+
final_texts += text_chunks[-1]
|
185 |
+
input_ids, image_bounds = self._convert(final_texts, max_length)
|
186 |
+
return MiniCPMVBatchFeature(data={
|
187 |
+
"input_ids": input_ids,
|
188 |
+
"pixel_values": [images],
|
189 |
+
"image_sizes": [image_sizes],
|
190 |
+
"image_bounds": [image_bounds],
|
191 |
+
"tgt_sizes": [tgt_sizes]
|
192 |
+
})
|
193 |
+
|
194 |
+
@property
|
195 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
196 |
+
def model_input_names(self):
|
197 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
198 |
+
image_processor_input_names = self.image_processor.model_input_names
|
199 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
200 |
+
|
201 |
+
|
202 |
+
def pad(self, orig_items, key, max_length=None, padding_value=0, padding_side="left"):
|
203 |
+
items = []
|
204 |
+
if isinstance(orig_items[0][key], list):
|
205 |
+
assert isinstance(orig_items[0][key][0], torch.Tensor)
|
206 |
+
for it in orig_items:
|
207 |
+
for tr in it[key]:
|
208 |
+
items.append({key: tr})
|
209 |
+
else:
|
210 |
+
assert isinstance(orig_items[0][key], torch.Tensor)
|
211 |
+
items = orig_items
|
212 |
+
|
213 |
+
batch_size = len(items)
|
214 |
+
shape = items[0][key].shape
|
215 |
+
dim = len(shape)
|
216 |
+
assert dim <= 3
|
217 |
+
if max_length is None:
|
218 |
+
max_length = 0
|
219 |
+
max_length = max(max_length, max(item[key].shape[-1] for item in items))
|
220 |
+
min_length = min(item[key].shape[-1] for item in items)
|
221 |
+
dtype = items[0][key].dtype
|
222 |
+
|
223 |
+
if dim == 1:
|
224 |
+
return torch.cat([item[key] for item in items], dim=0)
|
225 |
+
elif dim == 2:
|
226 |
+
if max_length == min_length:
|
227 |
+
return torch.cat([item[key] for item in items], dim=0)
|
228 |
+
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
|
229 |
+
else:
|
230 |
+
tensor = (
|
231 |
+
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
|
232 |
+
+ padding_value
|
233 |
+
)
|
234 |
+
|
235 |
+
for i, item in enumerate(items):
|
236 |
+
if dim == 2:
|
237 |
+
if padding_side == "left":
|
238 |
+
tensor[i, -len(item[key][0]) :] = item[key][0].clone()
|
239 |
+
else:
|
240 |
+
tensor[i, : len(item[key][0])] = item[key][0].clone()
|
241 |
+
elif dim == 3:
|
242 |
+
if padding_side == "left":
|
243 |
+
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
|
244 |
+
else:
|
245 |
+
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
|
246 |
+
|
247 |
+
return tensor
|
resampler.py
CHANGED
@@ -1,17 +1,9 @@
|
|
1 |
from functools import partial
|
2 |
import numpy as np
|
3 |
-
|
4 |
-
from typing import Optional, Tuple
|
5 |
import torch
|
6 |
from torch import nn
|
7 |
-
from torch import Tensor
|
8 |
-
import torch.nn.functional as F
|
9 |
-
from torch.nn.functional import *
|
10 |
-
from torch.nn.modules.activation import *
|
11 |
from torch.nn.init import trunc_normal_
|
12 |
-
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
13 |
-
from transformers import PreTrainedModel
|
14 |
-
from transformers.integrations import is_deepspeed_zero3_enabled
|
15 |
|
16 |
def get_2d_sincos_pos_embed(embed_dim, image_size):
|
17 |
"""
|
@@ -63,7 +55,7 @@ def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
|
|
63 |
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
|
64 |
return emb
|
65 |
|
66 |
-
|
67 |
class Resampler(nn.Module):
|
68 |
"""
|
69 |
A 2D perceiver-resampler network with one cross attention layers by
|
@@ -90,13 +82,14 @@ class Resampler(nn.Module):
|
|
90 |
self.max_size = max_size
|
91 |
|
92 |
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
|
|
|
93 |
|
94 |
if kv_dim is not None and kv_dim != embed_dim:
|
95 |
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
96 |
else:
|
97 |
self.kv_proj = nn.Identity()
|
98 |
|
99 |
-
self.attn = MultiheadAttention(embed_dim, num_heads)
|
100 |
self.ln_q = norm_layer(embed_dim)
|
101 |
self.ln_kv = norm_layer(embed_dim)
|
102 |
|
@@ -104,10 +97,9 @@ class Resampler(nn.Module):
|
|
104 |
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
|
105 |
|
106 |
self._set_2d_pos_cache(self.max_size)
|
|
|
107 |
|
108 |
def _set_2d_pos_cache(self, max_size, device='cpu'):
|
109 |
-
if is_deepspeed_zero3_enabled():
|
110 |
-
device='cuda'
|
111 |
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
|
112 |
self.register_buffer("pos_embed", pos_embed, persistent=False)
|
113 |
|
@@ -168,645 +160,4 @@ class Resampler(nn.Module):
|
|
168 |
return x
|
169 |
|
170 |
def _repeat(self, query, N: int):
|
171 |
-
return query.unsqueeze(1).repeat(1, N, 1)
|
172 |
-
|
173 |
-
|
174 |
-
class MultiheadAttention(nn.MultiheadAttention):
|
175 |
-
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
|
176 |
-
add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
|
177 |
-
super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype)
|
178 |
-
|
179 |
-
# rewrite out_proj layer,with nn.Linear
|
180 |
-
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
|
181 |
-
|
182 |
-
def forward(
|
183 |
-
self,
|
184 |
-
query: Tensor,
|
185 |
-
key: Tensor,
|
186 |
-
value: Tensor,
|
187 |
-
key_padding_mask: Optional[Tensor] = None,
|
188 |
-
need_weights: bool = True,
|
189 |
-
attn_mask: Optional[Tensor] = None,
|
190 |
-
average_attn_weights: bool = True,
|
191 |
-
is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
|
192 |
-
why_not_fast_path = ''
|
193 |
-
if ((attn_mask is not None and torch.is_floating_point(attn_mask))
|
194 |
-
or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
|
195 |
-
why_not_fast_path = "floating-point masks are not supported for fast path."
|
196 |
-
|
197 |
-
is_batched = query.dim() == 3
|
198 |
-
|
199 |
-
key_padding_mask = F._canonical_mask(
|
200 |
-
mask=key_padding_mask,
|
201 |
-
mask_name="key_padding_mask",
|
202 |
-
other_type=F._none_or_dtype(attn_mask),
|
203 |
-
other_name="attn_mask",
|
204 |
-
target_type=query.dtype
|
205 |
-
)
|
206 |
-
|
207 |
-
attn_mask = F._canonical_mask(
|
208 |
-
mask=attn_mask,
|
209 |
-
mask_name="attn_mask",
|
210 |
-
other_type=None,
|
211 |
-
other_name="",
|
212 |
-
target_type=query.dtype,
|
213 |
-
check_other=False,
|
214 |
-
)
|
215 |
-
|
216 |
-
|
217 |
-
if not is_batched:
|
218 |
-
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
219 |
-
elif query is not key or key is not value:
|
220 |
-
# When lifting this restriction, don't forget to either
|
221 |
-
# enforce that the dtypes all match or test cases where
|
222 |
-
# they don't!
|
223 |
-
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
224 |
-
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
225 |
-
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
226 |
-
elif self.in_proj_weight is None:
|
227 |
-
why_not_fast_path = "in_proj_weight was None"
|
228 |
-
elif query.dtype != self.in_proj_weight.dtype:
|
229 |
-
# this case will fail anyway, but at least they'll get a useful error message.
|
230 |
-
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
231 |
-
elif self.training:
|
232 |
-
why_not_fast_path = "training is enabled"
|
233 |
-
elif (self.num_heads % 2) != 0:
|
234 |
-
why_not_fast_path = "self.num_heads is not even"
|
235 |
-
elif not self.batch_first:
|
236 |
-
why_not_fast_path = "batch_first was not True"
|
237 |
-
elif self.bias_k is not None:
|
238 |
-
why_not_fast_path = "self.bias_k was not None"
|
239 |
-
elif self.bias_v is not None:
|
240 |
-
why_not_fast_path = "self.bias_v was not None"
|
241 |
-
elif self.add_zero_attn:
|
242 |
-
why_not_fast_path = "add_zero_attn was enabled"
|
243 |
-
elif not self._qkv_same_embed_dim:
|
244 |
-
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
245 |
-
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
|
246 |
-
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
|
247 |
-
is not supported with NestedTensor input"
|
248 |
-
elif torch.is_autocast_enabled():
|
249 |
-
why_not_fast_path = "autocast is enabled"
|
250 |
-
|
251 |
-
if not why_not_fast_path:
|
252 |
-
tensor_args = (
|
253 |
-
query,
|
254 |
-
key,
|
255 |
-
value,
|
256 |
-
self.in_proj_weight,
|
257 |
-
self.in_proj_bias,
|
258 |
-
self.out_proj.weight,
|
259 |
-
self.out_proj.bias,
|
260 |
-
)
|
261 |
-
# We have to use list comprehensions below because TorchScript does not support
|
262 |
-
# generator expressions.
|
263 |
-
if torch.overrides.has_torch_function(tensor_args):
|
264 |
-
why_not_fast_path = "some Tensor argument has_torch_function"
|
265 |
-
elif _is_make_fx_tracing():
|
266 |
-
why_not_fast_path = "we are running make_fx tracing"
|
267 |
-
elif not all(_check_arg_device(x) for x in tensor_args):
|
268 |
-
why_not_fast_path = ("some Tensor argument's device is neither one of "
|
269 |
-
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
|
270 |
-
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
|
271 |
-
why_not_fast_path = ("grad is enabled and at least one of query or the "
|
272 |
-
"input/output projection weights or biases requires_grad")
|
273 |
-
if not why_not_fast_path:
|
274 |
-
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
|
275 |
-
|
276 |
-
if self.in_proj_bias is not None and self.in_proj_weight is not None:
|
277 |
-
return torch._native_multi_head_attention(
|
278 |
-
query,
|
279 |
-
key,
|
280 |
-
value,
|
281 |
-
self.embed_dim,
|
282 |
-
self.num_heads,
|
283 |
-
self.in_proj_weight,
|
284 |
-
self.in_proj_bias,
|
285 |
-
self.out_proj.weight,
|
286 |
-
self.out_proj.bias,
|
287 |
-
merged_mask,
|
288 |
-
need_weights,
|
289 |
-
average_attn_weights,
|
290 |
-
mask_type)
|
291 |
-
|
292 |
-
any_nested = query.is_nested or key.is_nested or value.is_nested
|
293 |
-
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
|
294 |
-
f"The fast path was not hit because {why_not_fast_path}")
|
295 |
-
|
296 |
-
if self.batch_first and is_batched:
|
297 |
-
# make sure that the transpose op does not affect the "is" property
|
298 |
-
if key is value:
|
299 |
-
if query is key:
|
300 |
-
query = key = value = query.transpose(1, 0)
|
301 |
-
else:
|
302 |
-
query, key = (x.transpose(1, 0) for x in (query, key))
|
303 |
-
value = key
|
304 |
-
else:
|
305 |
-
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
|
306 |
-
|
307 |
-
if not self._qkv_same_embed_dim:
|
308 |
-
attn_output, attn_output_weights = self.multi_head_attention_forward(
|
309 |
-
query, key, value, self.embed_dim, self.num_heads,
|
310 |
-
self.in_proj_weight, self.in_proj_bias,
|
311 |
-
self.bias_k, self.bias_v, self.add_zero_attn,
|
312 |
-
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
313 |
-
training=self.training,
|
314 |
-
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
315 |
-
attn_mask=attn_mask,
|
316 |
-
use_separate_proj_weight=True,
|
317 |
-
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
318 |
-
v_proj_weight=self.v_proj_weight,
|
319 |
-
average_attn_weights=average_attn_weights,
|
320 |
-
is_causal=is_causal)
|
321 |
-
else:
|
322 |
-
attn_output, attn_output_weights = self.multi_head_attention_forward(
|
323 |
-
query, key, value, self.embed_dim, self.num_heads,
|
324 |
-
self.in_proj_weight, self.in_proj_bias,
|
325 |
-
self.bias_k, self.bias_v, self.add_zero_attn,
|
326 |
-
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
327 |
-
training=self.training,
|
328 |
-
key_padding_mask=key_padding_mask,
|
329 |
-
need_weights=need_weights,
|
330 |
-
attn_mask=attn_mask,
|
331 |
-
average_attn_weights=average_attn_weights,
|
332 |
-
is_causal=is_causal)
|
333 |
-
if self.batch_first and is_batched:
|
334 |
-
return attn_output.transpose(1, 0), attn_output_weights
|
335 |
-
else:
|
336 |
-
return attn_output, attn_output_weights
|
337 |
-
|
338 |
-
def multi_head_attention_forward(
|
339 |
-
self,
|
340 |
-
query: Tensor,
|
341 |
-
key: Tensor,
|
342 |
-
value: Tensor,
|
343 |
-
embed_dim_to_check: int,
|
344 |
-
num_heads: int,
|
345 |
-
in_proj_weight: Optional[Tensor],
|
346 |
-
in_proj_bias: Optional[Tensor],
|
347 |
-
bias_k: Optional[Tensor],
|
348 |
-
bias_v: Optional[Tensor],
|
349 |
-
add_zero_attn: bool,
|
350 |
-
dropout_p: float,
|
351 |
-
out_proj_weight: Tensor,
|
352 |
-
out_proj_bias: Optional[Tensor],
|
353 |
-
training: bool = True,
|
354 |
-
key_padding_mask: Optional[Tensor] = None,
|
355 |
-
need_weights: bool = True,
|
356 |
-
attn_mask: Optional[Tensor] = None,
|
357 |
-
use_separate_proj_weight: bool = False,
|
358 |
-
q_proj_weight: Optional[Tensor] = None,
|
359 |
-
k_proj_weight: Optional[Tensor] = None,
|
360 |
-
v_proj_weight: Optional[Tensor] = None,
|
361 |
-
static_k: Optional[Tensor] = None,
|
362 |
-
static_v: Optional[Tensor] = None,
|
363 |
-
average_attn_weights: bool = True,
|
364 |
-
is_causal: bool = False,
|
365 |
-
) -> Tuple[Tensor, Optional[Tensor]]:
|
366 |
-
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
|
367 |
-
if has_torch_function(tens_ops):
|
368 |
-
return handle_torch_function(
|
369 |
-
multi_head_attention_forward,
|
370 |
-
tens_ops,
|
371 |
-
query,
|
372 |
-
key,
|
373 |
-
value,
|
374 |
-
embed_dim_to_check,
|
375 |
-
num_heads,
|
376 |
-
in_proj_weight,
|
377 |
-
in_proj_bias,
|
378 |
-
bias_k,
|
379 |
-
bias_v,
|
380 |
-
add_zero_attn,
|
381 |
-
dropout_p,
|
382 |
-
out_proj_weight,
|
383 |
-
out_proj_bias,
|
384 |
-
training=training,
|
385 |
-
key_padding_mask=key_padding_mask,
|
386 |
-
need_weights=need_weights,
|
387 |
-
attn_mask=attn_mask,
|
388 |
-
is_causal=is_causal,
|
389 |
-
use_separate_proj_weight=use_separate_proj_weight,
|
390 |
-
q_proj_weight=q_proj_weight,
|
391 |
-
k_proj_weight=k_proj_weight,
|
392 |
-
v_proj_weight=v_proj_weight,
|
393 |
-
static_k=static_k,
|
394 |
-
static_v=static_v,
|
395 |
-
average_attn_weights=average_attn_weights,
|
396 |
-
)
|
397 |
-
|
398 |
-
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
399 |
-
|
400 |
-
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
401 |
-
# is batched, run the computation and before returning squeeze the
|
402 |
-
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
403 |
-
if not is_batched:
|
404 |
-
# unsqueeze if the input is unbatched
|
405 |
-
query = query.unsqueeze(1)
|
406 |
-
key = key.unsqueeze(1)
|
407 |
-
value = value.unsqueeze(1)
|
408 |
-
if key_padding_mask is not None:
|
409 |
-
key_padding_mask = key_padding_mask.unsqueeze(0)
|
410 |
-
|
411 |
-
# set up shape vars
|
412 |
-
tgt_len, bsz, embed_dim = query.shape
|
413 |
-
src_len, _, _ = key.shape
|
414 |
-
|
415 |
-
key_padding_mask = _canonical_mask(
|
416 |
-
mask=key_padding_mask,
|
417 |
-
mask_name="key_padding_mask",
|
418 |
-
other_type=_none_or_dtype(attn_mask),
|
419 |
-
other_name="attn_mask",
|
420 |
-
target_type=query.dtype
|
421 |
-
)
|
422 |
-
|
423 |
-
if is_causal and attn_mask is None:
|
424 |
-
raise RuntimeError(
|
425 |
-
"Need attn_mask if specifying the is_causal hint. "
|
426 |
-
"You may use the Transformer module method "
|
427 |
-
"`generate_square_subsequent_mask` to create this mask."
|
428 |
-
)
|
429 |
-
|
430 |
-
if is_causal and key_padding_mask is None and not need_weights:
|
431 |
-
# when we have a kpm or need weights, we need attn_mask
|
432 |
-
# Otherwise, we use the is_causal hint go as is_causal
|
433 |
-
# indicator to SDPA.
|
434 |
-
attn_mask = None
|
435 |
-
else:
|
436 |
-
attn_mask = _canonical_mask(
|
437 |
-
mask=attn_mask,
|
438 |
-
mask_name="attn_mask",
|
439 |
-
other_type=None,
|
440 |
-
other_name="",
|
441 |
-
target_type=query.dtype,
|
442 |
-
check_other=False,
|
443 |
-
)
|
444 |
-
|
445 |
-
if key_padding_mask is not None:
|
446 |
-
# We have the attn_mask, and use that to merge kpm into it.
|
447 |
-
# Turn off use of is_causal hint, as the merged mask is no
|
448 |
-
# longer causal.
|
449 |
-
is_causal = False
|
450 |
-
|
451 |
-
assert embed_dim == embed_dim_to_check, \
|
452 |
-
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
453 |
-
if isinstance(embed_dim, torch.Tensor):
|
454 |
-
# embed_dim can be a tensor when JIT tracing
|
455 |
-
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
|
456 |
-
else:
|
457 |
-
head_dim = embed_dim // num_heads
|
458 |
-
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
459 |
-
if use_separate_proj_weight:
|
460 |
-
# allow MHA to have different embedding dimensions when separate projection weights are used
|
461 |
-
assert key.shape[:2] == value.shape[:2], \
|
462 |
-
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
463 |
-
else:
|
464 |
-
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
465 |
-
|
466 |
-
#
|
467 |
-
# compute in-projection
|
468 |
-
#
|
469 |
-
if not use_separate_proj_weight:
|
470 |
-
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
471 |
-
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
472 |
-
else:
|
473 |
-
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
474 |
-
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
475 |
-
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
476 |
-
if in_proj_bias is None:
|
477 |
-
b_q = b_k = b_v = None
|
478 |
-
else:
|
479 |
-
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
480 |
-
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
|
481 |
-
|
482 |
-
# prep attention mask
|
483 |
-
|
484 |
-
if attn_mask is not None:
|
485 |
-
# ensure attn_mask's dim is 3
|
486 |
-
if attn_mask.dim() == 2:
|
487 |
-
correct_2d_size = (tgt_len, src_len)
|
488 |
-
if attn_mask.shape != correct_2d_size:
|
489 |
-
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
|
490 |
-
attn_mask = attn_mask.unsqueeze(0)
|
491 |
-
elif attn_mask.dim() == 3:
|
492 |
-
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
493 |
-
if attn_mask.shape != correct_3d_size:
|
494 |
-
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
|
495 |
-
else:
|
496 |
-
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
497 |
-
|
498 |
-
# add bias along batch dimension (currently second)
|
499 |
-
if bias_k is not None and bias_v is not None:
|
500 |
-
assert static_k is None, "bias cannot be added to static key."
|
501 |
-
assert static_v is None, "bias cannot be added to static value."
|
502 |
-
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
503 |
-
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
504 |
-
if attn_mask is not None:
|
505 |
-
attn_mask = pad(attn_mask, (0, 1))
|
506 |
-
if key_padding_mask is not None:
|
507 |
-
key_padding_mask = pad(key_padding_mask, (0, 1))
|
508 |
-
else:
|
509 |
-
assert bias_k is None
|
510 |
-
assert bias_v is None
|
511 |
-
|
512 |
-
#
|
513 |
-
# reshape q, k, v for multihead attention and make em batch first
|
514 |
-
#
|
515 |
-
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
516 |
-
if static_k is None:
|
517 |
-
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
518 |
-
else:
|
519 |
-
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
520 |
-
assert static_k.size(0) == bsz * num_heads, \
|
521 |
-
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
522 |
-
assert static_k.size(2) == head_dim, \
|
523 |
-
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
524 |
-
k = static_k
|
525 |
-
if static_v is None:
|
526 |
-
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
527 |
-
else:
|
528 |
-
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
529 |
-
assert static_v.size(0) == bsz * num_heads, \
|
530 |
-
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
531 |
-
assert static_v.size(2) == head_dim, \
|
532 |
-
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
533 |
-
v = static_v
|
534 |
-
|
535 |
-
# add zero attention along batch dimension (now first)
|
536 |
-
if add_zero_attn:
|
537 |
-
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
538 |
-
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
|
539 |
-
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
|
540 |
-
if attn_mask is not None:
|
541 |
-
attn_mask = pad(attn_mask, (0, 1))
|
542 |
-
if key_padding_mask is not None:
|
543 |
-
key_padding_mask = pad(key_padding_mask, (0, 1))
|
544 |
-
|
545 |
-
# update source sequence length after adjustments
|
546 |
-
src_len = k.size(1)
|
547 |
-
|
548 |
-
# merge key padding and attention masks
|
549 |
-
if key_padding_mask is not None:
|
550 |
-
assert key_padding_mask.shape == (bsz, src_len), \
|
551 |
-
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
552 |
-
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
|
553 |
-
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
|
554 |
-
if attn_mask is None:
|
555 |
-
attn_mask = key_padding_mask
|
556 |
-
else:
|
557 |
-
attn_mask = attn_mask + key_padding_mask
|
558 |
-
|
559 |
-
# adjust dropout probability
|
560 |
-
if not training:
|
561 |
-
dropout_p = 0.0
|
562 |
-
|
563 |
-
#
|
564 |
-
# (deep breath) calculate attention and out projection
|
565 |
-
#
|
566 |
-
|
567 |
-
if need_weights:
|
568 |
-
B, Nt, E = q.shape
|
569 |
-
q_scaled = q / math.sqrt(E)
|
570 |
-
|
571 |
-
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
572 |
-
|
573 |
-
if attn_mask is not None:
|
574 |
-
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
575 |
-
else:
|
576 |
-
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
577 |
-
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
578 |
-
if dropout_p > 0.0:
|
579 |
-
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
580 |
-
|
581 |
-
attn_output = torch.bmm(attn_output_weights, v)
|
582 |
-
|
583 |
-
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
584 |
-
attn_output = self.out_proj(attn_output)
|
585 |
-
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
586 |
-
|
587 |
-
# optionally average attention weights over heads
|
588 |
-
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
589 |
-
if average_attn_weights:
|
590 |
-
attn_output_weights = attn_output_weights.mean(dim=1)
|
591 |
-
|
592 |
-
if not is_batched:
|
593 |
-
# squeeze the output if input was unbatched
|
594 |
-
attn_output = attn_output.squeeze(1)
|
595 |
-
attn_output_weights = attn_output_weights.squeeze(0)
|
596 |
-
return attn_output, attn_output_weights
|
597 |
-
else:
|
598 |
-
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
599 |
-
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
600 |
-
# in order to match the input for SDPA of (N, num_heads, L, S)
|
601 |
-
if attn_mask is not None:
|
602 |
-
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
603 |
-
attn_mask = attn_mask.unsqueeze(0)
|
604 |
-
else:
|
605 |
-
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
606 |
-
|
607 |
-
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
608 |
-
k = k.view(bsz, num_heads, src_len, head_dim)
|
609 |
-
v = v.view(bsz, num_heads, src_len, head_dim)
|
610 |
-
|
611 |
-
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
612 |
-
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
613 |
-
|
614 |
-
attn_output = self.out_proj(attn_output)
|
615 |
-
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
616 |
-
if not is_batched:
|
617 |
-
# squeeze the output if input was unbatched
|
618 |
-
attn_output = attn_output.squeeze(1)
|
619 |
-
return attn_output, None
|
620 |
-
|
621 |
-
|
622 |
-
def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
|
623 |
-
key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
|
624 |
-
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
|
625 |
-
# and returns if the input is batched or not.
|
626 |
-
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
|
627 |
-
|
628 |
-
# Shape check.
|
629 |
-
if query.dim() == 3:
|
630 |
-
# Batched Inputs
|
631 |
-
is_batched = True
|
632 |
-
assert key.dim() == 3 and value.dim() == 3, \
|
633 |
-
("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
|
634 |
-
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
635 |
-
if key_padding_mask is not None:
|
636 |
-
assert key_padding_mask.dim() == 2, \
|
637 |
-
("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
|
638 |
-
f" but found {key_padding_mask.dim()}-D tensor instead")
|
639 |
-
if attn_mask is not None:
|
640 |
-
assert attn_mask.dim() in (2, 3), \
|
641 |
-
("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
642 |
-
f" but found {attn_mask.dim()}-D tensor instead")
|
643 |
-
elif query.dim() == 2:
|
644 |
-
# Unbatched Inputs
|
645 |
-
is_batched = False
|
646 |
-
assert key.dim() == 2 and value.dim() == 2, \
|
647 |
-
("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
|
648 |
-
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
649 |
-
|
650 |
-
if key_padding_mask is not None:
|
651 |
-
assert key_padding_mask.dim() == 1, \
|
652 |
-
("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
|
653 |
-
f" but found {key_padding_mask.dim()}-D tensor instead")
|
654 |
-
|
655 |
-
if attn_mask is not None:
|
656 |
-
assert attn_mask.dim() in (2, 3), \
|
657 |
-
("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
658 |
-
f" but found {attn_mask.dim()}-D tensor instead")
|
659 |
-
if attn_mask.dim() == 3:
|
660 |
-
expected_shape = (num_heads, query.shape[0], key.shape[0])
|
661 |
-
assert attn_mask.shape == expected_shape, \
|
662 |
-
(f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
|
663 |
-
else:
|
664 |
-
raise AssertionError(
|
665 |
-
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
|
666 |
-
|
667 |
-
return is_batched
|
668 |
-
|
669 |
-
|
670 |
-
def _canonical_mask(
|
671 |
-
mask: Optional[Tensor],
|
672 |
-
mask_name: str,
|
673 |
-
other_type: Optional[DType],
|
674 |
-
other_name: str,
|
675 |
-
target_type: DType,
|
676 |
-
check_other: bool = True,
|
677 |
-
) -> Optional[Tensor]:
|
678 |
-
|
679 |
-
if mask is not None:
|
680 |
-
_mask_dtype = mask.dtype
|
681 |
-
_mask_is_float = torch.is_floating_point(mask)
|
682 |
-
if _mask_dtype != torch.bool and not _mask_is_float:
|
683 |
-
raise AssertionError(
|
684 |
-
f"only bool and floating types of {mask_name} are supported")
|
685 |
-
if check_other and other_type is not None:
|
686 |
-
if _mask_dtype != other_type:
|
687 |
-
warnings.warn(
|
688 |
-
f"Support for mismatched {mask_name} and {other_name} "
|
689 |
-
"is deprecated. Use same type for both instead."
|
690 |
-
)
|
691 |
-
if not _mask_is_float:
|
692 |
-
mask = (
|
693 |
-
torch.zeros_like(mask, dtype=target_type)
|
694 |
-
.masked_fill_(mask, float("-inf"))
|
695 |
-
)
|
696 |
-
return mask
|
697 |
-
|
698 |
-
|
699 |
-
def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
|
700 |
-
if input is None:
|
701 |
-
return None
|
702 |
-
elif isinstance(input, torch.Tensor):
|
703 |
-
return input.dtype
|
704 |
-
raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
|
705 |
-
|
706 |
-
def _in_projection_packed(
|
707 |
-
q: Tensor,
|
708 |
-
k: Tensor,
|
709 |
-
v: Tensor,
|
710 |
-
w: Tensor,
|
711 |
-
b: Optional[Tensor] = None,
|
712 |
-
) -> List[Tensor]:
|
713 |
-
r"""
|
714 |
-
Performs the in-projection step of the attention operation, using packed weights.
|
715 |
-
Output is a triple containing projection tensors for query, key and value.
|
716 |
-
Args:
|
717 |
-
q, k, v: query, key and value tensors to be projected. For self-attention,
|
718 |
-
these are typically the same tensor; for encoder-decoder attention,
|
719 |
-
k and v are typically the same tensor. (We take advantage of these
|
720 |
-
identities for performance if they are present.) Regardless, q, k and v
|
721 |
-
must share a common embedding dimension; otherwise their shapes may vary.
|
722 |
-
w: projection weights for q, k and v, packed into a single tensor. Weights
|
723 |
-
are packed along dimension 0, in q, k, v order.
|
724 |
-
b: optional projection biases for q, k and v, packed into a single tensor
|
725 |
-
in q, k, v order.
|
726 |
-
Shape:
|
727 |
-
Inputs:
|
728 |
-
- q: :math:`(..., E)` where E is the embedding dimension
|
729 |
-
- k: :math:`(..., E)` where E is the embedding dimension
|
730 |
-
- v: :math:`(..., E)` where E is the embedding dimension
|
731 |
-
- w: :math:`(E * 3, E)` where E is the embedding dimension
|
732 |
-
- b: :math:`E * 3` where E is the embedding dimension
|
733 |
-
Output:
|
734 |
-
- in output list :math:`[q', k', v']`, each output tensor will have the
|
735 |
-
same shape as the corresponding input tensor.
|
736 |
-
"""
|
737 |
-
E = q.size(-1)
|
738 |
-
if k is v:
|
739 |
-
if q is k:
|
740 |
-
# self-attention
|
741 |
-
proj = linear(q, w, b)
|
742 |
-
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
|
743 |
-
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
744 |
-
return proj[0], proj[1], proj[2]
|
745 |
-
else:
|
746 |
-
# encoder-decoder attention
|
747 |
-
w_q, w_kv = w.split([E, E * 2])
|
748 |
-
if b is None:
|
749 |
-
b_q = b_kv = None
|
750 |
-
else:
|
751 |
-
b_q, b_kv = b.split([E, E * 2])
|
752 |
-
q_proj = linear(q, w_q, b_q)
|
753 |
-
kv_proj = linear(k, w_kv, b_kv)
|
754 |
-
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
|
755 |
-
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
756 |
-
return (q_proj, kv_proj[0], kv_proj[1])
|
757 |
-
else:
|
758 |
-
w_q, w_k, w_v = w.chunk(3)
|
759 |
-
if b is None:
|
760 |
-
b_q = b_k = b_v = None
|
761 |
-
else:
|
762 |
-
b_q, b_k, b_v = b.chunk(3)
|
763 |
-
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
764 |
-
|
765 |
-
|
766 |
-
def _in_projection(
|
767 |
-
q: Tensor,
|
768 |
-
k: Tensor,
|
769 |
-
v: Tensor,
|
770 |
-
w_q: Tensor,
|
771 |
-
w_k: Tensor,
|
772 |
-
w_v: Tensor,
|
773 |
-
b_q: Optional[Tensor] = None,
|
774 |
-
b_k: Optional[Tensor] = None,
|
775 |
-
b_v: Optional[Tensor] = None,
|
776 |
-
) -> Tuple[Tensor, Tensor, Tensor]:
|
777 |
-
r"""
|
778 |
-
Performs the in-projection step of the attention operation. This is simply
|
779 |
-
a triple of linear projections, with shape constraints on the weights which
|
780 |
-
ensure embedding dimension uniformity in the projected outputs.
|
781 |
-
Output is a triple containing projection tensors for query, key and value.
|
782 |
-
Args:
|
783 |
-
q, k, v: query, key and value tensors to be projected.
|
784 |
-
w_q, w_k, w_v: weights for q, k and v, respectively.
|
785 |
-
b_q, b_k, b_v: optional biases for q, k and v, respectively.
|
786 |
-
Shape:
|
787 |
-
Inputs:
|
788 |
-
- q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
|
789 |
-
number of leading dimensions.
|
790 |
-
- k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
|
791 |
-
number of leading dimensions.
|
792 |
-
- v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
|
793 |
-
number of leading dimensions.
|
794 |
-
- w_q: :math:`(Eq, Eq)`
|
795 |
-
- w_k: :math:`(Eq, Ek)`
|
796 |
-
- w_v: :math:`(Eq, Ev)`
|
797 |
-
- b_q: :math:`(Eq)`
|
798 |
-
- b_k: :math:`(Eq)`
|
799 |
-
- b_v: :math:`(Eq)`
|
800 |
-
Output: in output triple :math:`(q', k', v')`,
|
801 |
-
- q': :math:`[Qdims..., Eq]`
|
802 |
-
- k': :math:`[Kdims..., Eq]`
|
803 |
-
- v': :math:`[Vdims..., Eq]`
|
804 |
-
"""
|
805 |
-
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
|
806 |
-
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
|
807 |
-
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
|
808 |
-
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
|
809 |
-
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
|
810 |
-
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
|
811 |
-
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
|
812 |
-
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
|
|
1 |
from functools import partial
|
2 |
import numpy as np
|
3 |
+
|
|
|
4 |
import torch
|
5 |
from torch import nn
|
|
|
|
|
|
|
|
|
6 |
from torch.nn.init import trunc_normal_
|
|
|
|
|
|
|
7 |
|
8 |
def get_2d_sincos_pos_embed(embed_dim, image_size):
|
9 |
"""
|
|
|
55 |
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
|
56 |
return emb
|
57 |
|
58 |
+
|
59 |
class Resampler(nn.Module):
|
60 |
"""
|
61 |
A 2D perceiver-resampler network with one cross attention layers by
|
|
|
82 |
self.max_size = max_size
|
83 |
|
84 |
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
|
85 |
+
trunc_normal_(self.query, std=.02)
|
86 |
|
87 |
if kv_dim is not None and kv_dim != embed_dim:
|
88 |
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
89 |
else:
|
90 |
self.kv_proj = nn.Identity()
|
91 |
|
92 |
+
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
|
93 |
self.ln_q = norm_layer(embed_dim)
|
94 |
self.ln_kv = norm_layer(embed_dim)
|
95 |
|
|
|
97 |
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
|
98 |
|
99 |
self._set_2d_pos_cache(self.max_size)
|
100 |
+
self.apply(self._init_weights)
|
101 |
|
102 |
def _set_2d_pos_cache(self, max_size, device='cpu'):
|
|
|
|
|
103 |
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
|
104 |
self.register_buffer("pos_embed", pos_embed, persistent=False)
|
105 |
|
|
|
160 |
return x
|
161 |
|
162 |
def _repeat(self, query, N: int):
|
163 |
+
return query.unsqueeze(1).repeat(1, N, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenization_minicpmv_fast.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
4 |
+
|
5 |
+
|
6 |
+
class MiniCPMVTokenizerFast(PreTrainedTokenizerFast):
|
7 |
+
def __init__(self, **kwargs):
|
8 |
+
super().__init__(**kwargs)
|
9 |
+
self.eot_token = "<|eot_id|>"
|
10 |
+
self.im_start = "<image>"
|
11 |
+
self.im_end = "</image>"
|
12 |
+
self.ref_start = "<ref>"
|
13 |
+
self.ref_end = "</ref>"
|
14 |
+
self.box_start = "<box>"
|
15 |
+
self.box_end = "</box>"
|
16 |
+
self.quad_start = "<quad>"
|
17 |
+
self.quad_end = "</quad>"
|
18 |
+
self.slice_start = "<slice>"
|
19 |
+
self.slice_end = "</slice>"
|
20 |
+
|
21 |
+
@property
|
22 |
+
def eos_id(self):
|
23 |
+
return self.eos_token_id
|
24 |
+
|
25 |
+
@property
|
26 |
+
def bos_id(self):
|
27 |
+
return self.bos_token_id
|
28 |
+
|
29 |
+
@property
|
30 |
+
def unk_id(self):
|
31 |
+
return self.unk_token_id
|
32 |
+
|
33 |
+
@property
|
34 |
+
def eot_id(self):
|
35 |
+
return self.convert_tokens_to_ids(self.eot_token)
|
36 |
+
|
37 |
+
@property
|
38 |
+
def im_start_id(self):
|
39 |
+
return self.convert_tokens_to_ids(self.im_start)
|
40 |
+
|
41 |
+
@property
|
42 |
+
def im_end_id(self):
|
43 |
+
return self.convert_tokens_to_ids(self.im_end)
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
def escape(text: str) -> str:
|
47 |
+
return text
|
48 |
+
|
49 |
+
@staticmethod
|
50 |
+
def unescape(text: str) -> str:
|
51 |
+
return text
|
tokenizer_config.json
CHANGED
@@ -2051,7 +2051,7 @@
|
|
2051 |
},
|
2052 |
"auto_map": {
|
2053 |
"AutoTokenizer": [
|
2054 |
-
"
|
2055 |
null
|
2056 |
]
|
2057 |
},
|
@@ -2063,10 +2063,10 @@
|
|
2063 |
"input_ids",
|
2064 |
"attention_mask"
|
2065 |
],
|
2066 |
-
"model_max_length":
|
2067 |
"pad_token": "!",
|
2068 |
"padding_side": "right",
|
2069 |
-
"tokenizer_class": "
|
2070 |
"truncation_side": "right",
|
2071 |
"unk_token": "<unk>"
|
2072 |
}
|
|
|
2051 |
},
|
2052 |
"auto_map": {
|
2053 |
"AutoTokenizer": [
|
2054 |
+
"tokenization_minicpmv_fast.MiniCPMVTokenizerFast",
|
2055 |
null
|
2056 |
]
|
2057 |
},
|
|
|
2063 |
"input_ids",
|
2064 |
"attention_mask"
|
2065 |
],
|
2066 |
+
"model_max_length": 2048,
|
2067 |
"pad_token": "!",
|
2068 |
"padding_side": "right",
|
2069 |
+
"tokenizer_class": "MiniCPMVTokenizerFast",
|
2070 |
"truncation_side": "right",
|
2071 |
"unk_token": "<unk>"
|
2072 |
}
|