# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for MiniCPMV. """ from typing import List, Optional, Union, Dict, Any import torch import re from transformers.image_processing_utils import BatchFeature from transformers.image_utils import ImageInput from transformers.processing_utils import ProcessorMixin from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device from .image_processing_minicpmv import MiniCPMVBatchFeature class MiniCPMVProcessor(ProcessorMixin): r""" Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor. [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information. Args: image_processor ([`MiniCPMVImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerWrapper`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "AutoImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor=None, tokenizer=None): super().__init__(image_processor, tokenizer) self.version = image_processor.version def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, do_pad: Optional[bool] = True, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> MiniCPMVBatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). do_pad (`bool`, *optional*, defaults to self.do_pad): Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros. truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if images is not None: image_inputs = self.image_processor(images, do_pad=do_pad, return_tensors=return_tensors) return self._convert_images_texts_to_inputs(image_inputs, text, max_length=max_length) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ output_ids = args[0] result_text = [] for result in output_ids: result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id: result = result[:-1] result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip()) return result_text # return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ result = args[0] result = result[result != 0] if result[0] == self.tokenizer.bos_id: result = result[1:] if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id): result = result[:-1] return self.tokenizer.decode(result, *args[1:], **kwargs).strip() def _convert( self, input_str, max_inp_length: Optional[int] = None ): if self.version == 2.5 or self.tokenizer.add_bos_token: input_ids = self.tokenizer.encode(input_str) else: input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str) if max_inp_length is not None: input_ids = input_ids[:max_inp_length] input_ids = torch.tensor(input_ids, dtype=torch.int32) image_start_tokens = torch.where(input_ids == self.tokenizer.im_start_id)[0] image_start_tokens += 1 image_end_tokens = torch.where(input_ids == self.tokenizer.im_end_id)[0] valid_image_nums = max(len(image_start_tokens), len(image_end_tokens)) image_bounds = torch.hstack( [ image_start_tokens[:valid_image_nums].unsqueeze(-1), image_end_tokens[:valid_image_nums].unsqueeze(-1), ] ) return input_ids.unsqueeze(0), image_bounds def _convert_images_texts_to_inputs(self, images, texts, do_pad=False, truncation=None, max_length=None, return_tensors=None): if not len(images): model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=do_pad, truncation=truncation, max_length=max_length) return MiniCPMVBatchFeature(data={**model_inputs}) pattern = "(./)" images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"] image_tags = re.findall(pattern, texts) assert len(image_tags) == len(image_sizes) text_chunks = texts.split(pattern) final_texts = "" for i in range(len(image_tags)): final_texts = final_texts + text_chunks[i] + self.image_processor.get_slice_image_placeholder(image_sizes[i]) final_texts += text_chunks[-1] input_ids, image_bounds = self._convert(final_texts, max_length) return MiniCPMVBatchFeature(data={ "input_ids": input_ids, "pixel_values": [images], "image_sizes": [image_sizes], "image_bounds": [image_bounds], "tgt_sizes": [tgt_sizes] }) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def pad(self, orig_items, key, max_length=None, padding_value=0, padding_side="left"): items = [] if isinstance(orig_items[0][key], list): assert isinstance(orig_items[0][key][0], torch.Tensor) for it in orig_items: for tr in it[key]: items.append({key: tr}) else: assert isinstance(orig_items[0][key], torch.Tensor) items = orig_items batch_size = len(items) shape = items[0][key].shape dim = len(shape) assert dim <= 3 if max_length is None: max_length = 0 max_length = max(max_length, max(item[key].shape[-1] for item in items)) min_length = min(item[key].shape[-1] for item in items) dtype = items[0][key].dtype if dim == 1: return torch.cat([item[key] for item in items], dim=0) elif dim == 2: if max_length == min_length: return torch.cat([item[key] for item in items], dim=0) tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value else: tensor = ( torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value ) for i, item in enumerate(items): if dim == 2: if padding_side == "left": tensor[i, -len(item[key][0]) :] = item[key][0].clone() else: tensor[i, : len(item[key][0])] = item[key][0].clone() elif dim == 3: if padding_side == "left": tensor[i, -len(item[key][0]) :, :] = item[key][0].clone() else: tensor[i, : len(item[key][0]), :] = item[key][0].clone() return tensor