RanchiZhao commited on
Commit
b4c018c
·
verified ·
1 Parent(s): fd8ff8f

Update modeling_minicpm.py

Browse files
Files changed (1) hide show
  1. modeling_minicpm.py +14 -38
modeling_minicpm.py CHANGED
@@ -48,7 +48,7 @@ from transformers.utils import (
48
  replace_return_docstrings,
49
  )
50
  from transformers.utils.import_utils import is_torch_fx_available
51
- from .configuration_minicpm import MiniCPMConfig
52
  import re
53
 
54
  try:
@@ -69,7 +69,7 @@ if is_torch_fx_available():
69
 
70
  logger = logging.get_logger(__name__)
71
 
72
- _CONFIG_FOR_DOC = "MiniCPMConfig"
73
 
74
 
75
  def _get_unpad_data(attention_mask):
@@ -220,7 +220,6 @@ class MiniCPMLongRoPE(MiniCPMRotaryEmbedding):
220
  self.scaling_factor = math.sqrt(
221
  1 + math.log(scale) /
222
  math.log(self.original_max_position_embeddings))
223
- print("using longrope!!!")
224
  super().__init__(dim, max_position_embeddings, base, device)
225
 
226
  def _set_cos_sin_cache(self, seq_len, device, dtype):
@@ -235,8 +234,6 @@ class MiniCPMLongRoPE(MiniCPMRotaryEmbedding):
235
  torch.outer(t, 1.0 / ext_factors).to(device=device),
236
  self.inv_freq.to(device=device).to(dtype)
237
  )
238
- # print("??? rope freqs: ", freqs.shape)
239
- # print("??? rope freqs: ", freqs)
240
  # Different from paper, but it uses a different permutation in order to obtain the same calculation
241
  emb = torch.cat((freqs, freqs), dim=-1)
242
  self.register_buffer("cos_cached", emb.cos().to(dtype) * self.scaling_factor, persistent=False)
@@ -334,7 +331,7 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
334
  class MiniCPMAttention(nn.Module):
335
  """Multi-headed attention from 'Attention Is All You Need' paper"""
336
 
337
- def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None):
338
  super().__init__()
339
  self.config = config
340
  self.layer_idx = layer_idx
@@ -601,17 +598,8 @@ class MiniCPMFlashAttention2(MiniCPMAttention):
601
  kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
602
 
603
  cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
604
- # print("before rope q shape: ", q_pe.shape)
605
- # print("before rope k shape: ", k_pe.shape)
606
- # print("before rope q: ", q_pe.transpose(1, 2))
607
- # print("before rope k: ", k_pe)
608
  q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
609
- # print("after rope q shape: ", q_pe.shape)
610
- # print("after rope k shape: ", k_pe.shape)
611
- # print("after rope q: ", q_pe.transpose(1, 2))
612
- # print("after rope k: ", k_pe)
613
- # exit(1)
614
-
615
  query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
616
  query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
617
  query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
@@ -637,12 +625,6 @@ class MiniCPMFlashAttention2(MiniCPMAttention):
637
 
638
  dropout_rate = self.attention_dropout if self.training else 0.0
639
 
640
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
641
- # therefore the input hidden states gets silently casted in float32. Hence, we need
642
- # cast them back in the correct dtype just to be sure everything works as expected.
643
- # This might slowdown training & inference so it is recommended to not cast the LayerNorms
644
- # in fp32. (DeepseekV2RMSNorm handles it correctly)
645
-
646
  input_dtype = query_states.dtype
647
  if input_dtype == torch.float32:
648
  # Handle the case where the model is quantized
@@ -802,7 +784,7 @@ class MiniCPMSdpaAttention(MiniCPMAttention):
802
  if output_attentions:
803
  # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
804
  logger.warning_once(
805
- "MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
806
  'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
807
  )
808
  return super().forward(
@@ -902,7 +884,7 @@ MINICPM_ATTENTION_CLASSES = {
902
 
903
 
904
  class MiniCPMDecoderLayer(nn.Module):
905
- def __init__(self, config: MiniCPMConfig, layer_idx: int):
906
  super().__init__()
907
  self.hidden_size = config.hidden_size
908
  self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
@@ -986,7 +968,7 @@ MINICPM_START_DOCSTRING = r"""
986
  and behavior.
987
 
988
  Parameters:
989
- config ([`MiniCPMConfig`]):
990
  Model configuration class with all the parameters of the model. Initializing with a config file does not
991
  load the weights associated with the model, only the configuration. Check out the
992
  [`~PreTrainedModel.from_pretrained`] method to load the model weights.
@@ -998,7 +980,7 @@ MINICPM_START_DOCSTRING = r"""
998
  MINICPM_START_DOCSTRING,
999
  )
1000
  class MiniCPM3PreTrainedModel(PreTrainedModel):
1001
- config_class = MiniCPMConfig
1002
  base_model_prefix = "model"
1003
  supports_gradient_checkpointing = True
1004
  _no_split_modules = ["MiniCPMDecoderLayer"]
@@ -1098,10 +1080,10 @@ class MiniCPM3Model(MiniCPM3PreTrainedModel):
1098
  Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
1099
 
1100
  Args:
1101
- config: MiniCPMConfig
1102
  """
1103
 
1104
- def __init__(self, config: MiniCPMConfig):
1105
  super().__init__(config)
1106
  self.padding_idx = config.pad_token_id
1107
  self.vocab_size = config.vocab_size
@@ -1239,9 +1221,7 @@ class MiniCPM3Model(MiniCPM3PreTrainedModel):
1239
  all_self_attns += (layer_outputs[1],)
1240
 
1241
  hidden_states = self.norm(hidden_states)
1242
- # print("model outputs shape: ", hidden_states.shape)
1243
- # print("model outputs: ", hidden_states)
1244
-
1245
  # add hidden states from the last decoder layer
1246
  if output_hidden_states:
1247
  all_hidden_states += (hidden_states,)
@@ -1264,7 +1244,7 @@ class MiniCPM3ForCausalLM(MiniCPM3PreTrainedModel):
1264
 
1265
  def __init__(self, config):
1266
  super().__init__(config)
1267
- self.model = MiniCPMModel(config)
1268
  self.vocab_size = config.vocab_size
1269
  self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1270
 
@@ -1461,15 +1441,11 @@ class MiniCPM3ForCausalLM(MiniCPM3PreTrainedModel):
1461
  "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1462
 
1463
  history.append({"role": role, "content": query})
1464
- history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False)
1465
  inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
1466
  outputs = self.generate(**inputs, **gen_kwargs)
1467
  outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1468
  response = tokenizer.decode(outputs)
1469
- pattern = re.compile(r".*?(?=<AI>|<用户>)", re.DOTALL)
1470
- matches = pattern.findall(response)
1471
- if len(matches) > 0:
1472
- response = matches[0]
1473
  history.append({"role": "assistant", "content": response})
1474
  return response, history
1475
 
@@ -1493,7 +1469,7 @@ class MiniCPM3ForSequenceClassification(MiniCPM3PreTrainedModel):
1493
  def __init__(self, config):
1494
  super().__init__(config)
1495
  self.num_labels = config.num_labels
1496
- self.model = MiniCPMModel(config)
1497
  self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1498
 
1499
  # Initialize weights and apply final processing
 
48
  replace_return_docstrings,
49
  )
50
  from transformers.utils.import_utils import is_torch_fx_available
51
+ from .configuration_minicpm import MiniCPM3Config
52
  import re
53
 
54
  try:
 
69
 
70
  logger = logging.get_logger(__name__)
71
 
72
+ _CONFIG_FOR_DOC = "MiniCPM3Config"
73
 
74
 
75
  def _get_unpad_data(attention_mask):
 
220
  self.scaling_factor = math.sqrt(
221
  1 + math.log(scale) /
222
  math.log(self.original_max_position_embeddings))
 
223
  super().__init__(dim, max_position_embeddings, base, device)
224
 
225
  def _set_cos_sin_cache(self, seq_len, device, dtype):
 
234
  torch.outer(t, 1.0 / ext_factors).to(device=device),
235
  self.inv_freq.to(device=device).to(dtype)
236
  )
 
 
237
  # Different from paper, but it uses a different permutation in order to obtain the same calculation
238
  emb = torch.cat((freqs, freqs), dim=-1)
239
  self.register_buffer("cos_cached", emb.cos().to(dtype) * self.scaling_factor, persistent=False)
 
331
  class MiniCPMAttention(nn.Module):
332
  """Multi-headed attention from 'Attention Is All You Need' paper"""
333
 
334
+ def __init__(self, config: MiniCPM3Config, layer_idx: Optional[int] = None):
335
  super().__init__()
336
  self.config = config
337
  self.layer_idx = layer_idx
 
598
  kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
599
 
600
  cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 
 
 
 
601
  q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
602
+
 
 
 
 
 
603
  query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
604
  query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
605
  query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
 
625
 
626
  dropout_rate = self.attention_dropout if self.training else 0.0
627
 
 
 
 
 
 
 
628
  input_dtype = query_states.dtype
629
  if input_dtype == torch.float32:
630
  # Handle the case where the model is quantized
 
784
  if output_attentions:
785
  # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
786
  logger.warning_once(
787
+ "MiniCPM3Model is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
788
  'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
789
  )
790
  return super().forward(
 
884
 
885
 
886
  class MiniCPMDecoderLayer(nn.Module):
887
+ def __init__(self, config: MiniCPM3Config, layer_idx: int):
888
  super().__init__()
889
  self.hidden_size = config.hidden_size
890
  self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
 
968
  and behavior.
969
 
970
  Parameters:
971
+ config ([`MiniCPM3Config`]):
972
  Model configuration class with all the parameters of the model. Initializing with a config file does not
973
  load the weights associated with the model, only the configuration. Check out the
974
  [`~PreTrainedModel.from_pretrained`] method to load the model weights.
 
980
  MINICPM_START_DOCSTRING,
981
  )
982
  class MiniCPM3PreTrainedModel(PreTrainedModel):
983
+ config_class = MiniCPM3Config
984
  base_model_prefix = "model"
985
  supports_gradient_checkpointing = True
986
  _no_split_modules = ["MiniCPMDecoderLayer"]
 
1080
  Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
1081
 
1082
  Args:
1083
+ config: MiniCPM3Config
1084
  """
1085
 
1086
+ def __init__(self, config: MiniCPM3Config):
1087
  super().__init__(config)
1088
  self.padding_idx = config.pad_token_id
1089
  self.vocab_size = config.vocab_size
 
1221
  all_self_attns += (layer_outputs[1],)
1222
 
1223
  hidden_states = self.norm(hidden_states)
1224
+
 
 
1225
  # add hidden states from the last decoder layer
1226
  if output_hidden_states:
1227
  all_hidden_states += (hidden_states,)
 
1244
 
1245
  def __init__(self, config):
1246
  super().__init__(config)
1247
+ self.model = MiniCPM3Model(config)
1248
  self.vocab_size = config.vocab_size
1249
  self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1250
 
 
1441
  "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1442
 
1443
  history.append({"role": role, "content": query})
1444
+ history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
1445
  inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
1446
  outputs = self.generate(**inputs, **gen_kwargs)
1447
  outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1448
  response = tokenizer.decode(outputs)
 
 
 
 
1449
  history.append({"role": "assistant", "content": response})
1450
  return response, history
1451
 
 
1469
  def __init__(self, config):
1470
  super().__init__(config)
1471
  self.num_labels = config.num_labels
1472
+ self.model = MiniCPM3Model(config)
1473
  self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1474
 
1475
  # Initialize weights and apply final processing