Upload 11 files
Browse filesAdd model files of
MiniCPM4-0.5B-QAT-Int4-unquantized
- README.md +152 -3
- added_tokens.json +10 -0
- config.json +37 -0
- configuration_minicpm.py +207 -0
- generation_config.json +12 -0
- model.safetensors +3 -0
- modeling_minicpm.py +0 -0
- special_tokens_map.json +33 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +117 -0
README.md
CHANGED
@@ -1,3 +1,152 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
library_name: transformers
|
8 |
+
---
|
9 |
+
<div align="center">
|
10 |
+
<img src="https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm_logo.png?raw=true" width="500em" ></img>
|
11 |
+
</div>
|
12 |
+
|
13 |
+
<p align="center">
|
14 |
+
<a href="https://github.com/OpenBMB/MiniCPM/" target="_blank">GitHub Repo</a> |
|
15 |
+
<a href="https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf" target="_blank">Technical Report</a>
|
16 |
+
</p>
|
17 |
+
<p align="center">
|
18 |
+
👋 Join us on <a href="https://discord.gg/3cGQn9b3YM" target="_blank">Discord</a> and <a href="https://github.com/OpenBMB/MiniCPM/blob/main/assets/wechat.jpg" target="_blank">WeChat</a>
|
19 |
+
</p>
|
20 |
+
|
21 |
+
## What's New
|
22 |
+
- [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report [here](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf).🔥🔥🔥
|
23 |
+
|
24 |
+
## MiniCPM4 Series
|
25 |
+
MiniCPM4 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems.
|
26 |
+
- [MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship of MiniCPM4, with 8B parameters, trained on 8T tokens.
|
27 |
+
- [MiniCPM4-0.5B](https://huggingface.co/openbmb/MiniCPM4-0.5B): The small version of MiniCPM4, with 0.5B parameters, trained on 1T tokens.
|
28 |
+
- [MiniCPM4-8B-Eagle-FRSpec](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference for MiniCPM4-8B.
|
29 |
+
- [MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu): Eagle head trained with QAT for FRSpec, efficiently integrate speculation and quantization to achieve ultra acceleration for MiniCPM4-8B.
|
30 |
+
- [MiniCPM4-8B-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-vLLM): Eagle head in vLLM format, accelerating speculative inference for MiniCPM4-8B.
|
31 |
+
- [MiniCPM4-8B-marlin-Eagle-vLLM](https://huggingface.co/openbmb/MiniCPM4-8B-marlin-Eagle-vLLM): Quantized Eagle head for vLLM format, accelerating speculative inference for MiniCPM4-8B.
|
32 |
+
- [BitCPM4-0.5B](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization applied to MiniCPM4-0.5B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
33 |
+
- [BitCPM4-1B](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization applied to MiniCPM3-1B compresses model parameters into ternary values, achieving a 90% reduction in bit width.
|
34 |
+
- [MiniCPM4-Survey](https://huggingface.co/openbmb/MiniCPM4-Survey): Based on MiniCPM4-8B, accepts users' quiries as input and autonomously generate trustworthy, long-form survey papers.
|
35 |
+
- [MiniCPM4-MCP](https://huggingface.co/openbmb/MiniCPM4-MCP): Based on MiniCPM4-8B, accepts users' queries and available MCP tools as input and autonomously calls relevant MCP tools to satisfy users' requirements.
|
36 |
+
- [MiniCPM4-0.5B-QAT-Int4-unquantized](https://huggingface.co/openbmb/MiniCPM4-0.5B-QAT-Int4-unquantized): Int4 version of MiniCPM4-0.5B, trained by QAT and stored in fake quantization style. (**<-- you are here**)
|
37 |
+
- [MiniCPM4-0.5B-QAT-Int4-GPTQ-format](https://huggingface.co/openbmb/MiniCPM4-0.5B-QAT-Int4-GPTQ-format): Int4 version of MiniCPM4-0.5B, trained by QAT and stored in GPTQ format.
|
38 |
+
- [MiniCPM4-0.5B-QAT-Int4-GGUF](https://huggingface.co/openbmb/MiniCPM4-0.5B-QAT-Int4-GGUF): Int4 version of MiniCPM4-0.5B in GGUF.
|
39 |
+
|
40 |
+
## Introduction
|
41 |
+
MiniCPM 4 is an extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements.
|
42 |
+
|
43 |
+
- 🏗️ **Efficient Model Architecture:**
|
44 |
+
- InfLLM v2 -- Trainable Sparse Attention Mechanism: Adopts a trainable sparse attention mechanism architecture where each token only needs to compute relevance with less than 5% of tokens in 128K long text processing, significantly reducing computational overhead for long texts
|
45 |
+
|
46 |
+
- 🧠 **Efficient Learning Algorithms:**
|
47 |
+
- Model Wind Tunnel 2.0 -- Efficient Predictable Scaling: Introduces scaling prediction methods for performance of downstream tasks, enabling more precise model training configuration search
|
48 |
+
- BitCPM -- Ultimate Ternary Quantization: Compresses model parameter bit-width to 3 values, achieving 90% extreme model bit-width reduction
|
49 |
+
- Efficient Training Engineering Optimization: Adopts FP8 low-precision computing technology combined with Multi-token Prediction training strategy
|
50 |
+
|
51 |
+
- 📚 **High-Quality Training Data:**
|
52 |
+
- UltraClean -- High-quality Pre-training Data Filtering and Generation: Builds iterative data cleaning strategies based on efficient data verification, open-sourcing high-quality Chinese and English pre-training dataset [UltraFinweb](https://huggingface.co/datasets/openbmb/Ultra-FineWeb)
|
53 |
+
- UltraChat v2 -- High-quality Supervised Fine-tuning Data Generation: Constructs large-scale high-quality supervised fine-tuning datasets covering multiple dimensions including knowledge-intensive data, reasoning-intensive data, instruction-following data, long text understanding data, and tool calling data
|
54 |
+
|
55 |
+
- ⚡ **Efficient Inference System:**
|
56 |
+
- CPM.cu -- Lightweight and Efficient CUDA Inference Framework: Integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding
|
57 |
+
- ArkInfer -- Cross-platform Deployment System: Supports efficient deployment across multiple backend environments, providing flexible cross-platform adaptation capabilities
|
58 |
+
|
59 |
+
## Usage
|
60 |
+
### Inference with Transformers
|
61 |
+
```python
|
62 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
+
import torch
|
64 |
+
|
65 |
+
path = "openbmb/MiniCPM4-0.5B-QAT-Int4-unquantized"
|
66 |
+
device = "cuda"
|
67 |
+
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
69 |
+
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True)
|
70 |
+
|
71 |
+
messages = [
|
72 |
+
{"role": "user", "content": "推荐5个北京的景点。"},
|
73 |
+
]
|
74 |
+
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(device)
|
75 |
+
|
76 |
+
model_outputs = model.generate(
|
77 |
+
model_inputs,
|
78 |
+
max_new_tokens=1024,
|
79 |
+
top_p=0.7,
|
80 |
+
temperature=0.7
|
81 |
+
)
|
82 |
+
|
83 |
+
output_token_ids = [
|
84 |
+
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
|
85 |
+
]
|
86 |
+
|
87 |
+
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
|
88 |
+
print(responses)
|
89 |
+
|
90 |
+
```
|
91 |
+
|
92 |
+
### Inference with [vLLM](https://github.com/vllm-project/vllm)
|
93 |
+
|
94 |
+
You can inference MiniCPM4-0.5B-QAT-Int4-unquantized with vLLM:
|
95 |
+
```python
|
96 |
+
from transformers import AutoTokenizer
|
97 |
+
from vllm import LLM, SamplingParams
|
98 |
+
|
99 |
+
model_name = "openbmb/MiniCPM4-0.5B-QAT-Int4-unquantized"
|
100 |
+
prompt = [{"role": "user", "content": "推荐5个北京的景点。"}]
|
101 |
+
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
103 |
+
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
|
104 |
+
|
105 |
+
llm = LLM(
|
106 |
+
model=model_name,
|
107 |
+
trust_remote_code=True,
|
108 |
+
max_num_batched_tokens=32768,
|
109 |
+
dtype="bfloat16",
|
110 |
+
gpu_memory_utilization=0.8,
|
111 |
+
)
|
112 |
+
sampling_params = SamplingParams(top_p=0.7, temperature=0.7, max_tokens=1024, repetition_penalty=1.02)
|
113 |
+
|
114 |
+
outputs = llm.generate(prompts=input_text, sampling_params=sampling_params)
|
115 |
+
|
116 |
+
print(outputs[0].outputs[0].text)
|
117 |
+
```
|
118 |
+
|
119 |
+
## Evaluation Results
|
120 |
+
| Model | Qwen3 | Llama3.2 | Gemma3 | MiniCPM4 | MiniCPM4 | MiniCPM4 |
|
121 |
+
|----------------|-------|----------|--------|----------|----------|----------|
|
122 |
+
| #Paramete | 0.6B | 1B | 1B | 0.5B | 0.5B | 0.5B |
|
123 |
+
| #Precision | BF16 | BF16 | BF16 | BF16 |Int4(Fake)|Int4(GPTQ)|
|
124 |
+
| MMLU | 42.95 | 46.89 | 41.64 | 55.55 | 55.46 | 53.93 |
|
125 |
+
| CMMLU | 42.05 | 23.73 | 25.09 | 65.22 | 63.91 | 63.73 |
|
126 |
+
| Ceval | 45.53 | 36.74 | 31.83 | 66.11 | 64.85 | 65.22 |
|
127 |
+
| BBH | 28.32 | 25.42 | 33.21 | 49.87 | 48.81 | 49.09 |
|
128 |
+
| GSM8K | 61.71 | 39.76 | 61.26 | 52.08 | 45.41 | 45.49 |
|
129 |
+
| MBPP | 47.86 | 47.47 | 59.92 | 59.14 | 55.64 | 55.25 |
|
130 |
+
| AVERAGE | 44.73 | 36.66 | 42.15 | 58.00 | 55.68 | 55.45 |
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Statement
|
135 |
+
- As a language model, MiniCPM generates content by learning from a vast amount of text.
|
136 |
+
- However, it does not possess the ability to comprehend or express personal opinions or value judgments.
|
137 |
+
- Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
|
138 |
+
- Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
|
139 |
+
|
140 |
+
## LICENSE
|
141 |
+
- This repository and MiniCPM models are released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
142 |
+
|
143 |
+
## Citation
|
144 |
+
- Please cite our [paper](https://github.com/OpenBMB/MiniCPM/tree/main/report/MiniCPM_4_Technical_Report.pdf) if you find our work valuable.
|
145 |
+
|
146 |
+
```bibtex
|
147 |
+
@article{minicpm4,
|
148 |
+
title={{MiniCPM4}: Ultra-Efficient LLMs on End Devices},
|
149 |
+
author={MiniCPM Team},
|
150 |
+
year={2025}
|
151 |
+
}
|
152 |
+
```
|
added_tokens.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|execute_end|>": 73444,
|
3 |
+
"<|execute_start|>": 73443,
|
4 |
+
"<|fim_middle|>": 73446,
|
5 |
+
"<|fim_prefix|>": 73445,
|
6 |
+
"<|fim_suffix|>": 73447,
|
7 |
+
"<|im_end|>": 73440,
|
8 |
+
"<|im_start|>": 73441,
|
9 |
+
"<|tool_call|>": 73442
|
10 |
+
}
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openbmb/MiniCPM4-0.5B-QAT-Int4-unquantized",
|
3 |
+
"architectures": [
|
4 |
+
"MiniCPMForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
8 |
+
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
9 |
+
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
|
10 |
+
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
|
11 |
+
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
|
12 |
+
},
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"eos_token_id": [2, 73440],
|
15 |
+
"hidden_act": "silu",
|
16 |
+
"hidden_size": 1024,
|
17 |
+
"initializer_range": 0.1,
|
18 |
+
"intermediate_size": 4096,
|
19 |
+
"max_position_embeddings": 32768,
|
20 |
+
"num_attention_heads": 16,
|
21 |
+
"num_hidden_layers": 24,
|
22 |
+
"num_key_value_heads": 2,
|
23 |
+
"rms_norm_eps": 1e-05,
|
24 |
+
"rope_scaling": {
|
25 |
+
"rope_type": "longrope",
|
26 |
+
"long_factor": [1.0004360675811768, 1.0668443441390991, 1.1631425619125366, 1.3025742769241333, 1.5040205717086792, 1.7941505908966064, 2.2101221084594727, 2.802666664123535, 3.6389970779418945, 4.804192543029785, 6.39855432510376, 8.527148246765137, 11.277542114257812, 14.684998512268066, 18.69317054748535, 23.13019371032715, 27.72362518310547, 32.1606559753418, 36.168827056884766, 39.57627868652344, 42.32667541503906, 44.45526885986328, 46.04962921142578, 47.21482849121094, 48.05115509033203, 48.64370346069336, 49.05967712402344, 49.34980392456055, 49.551246643066406, 49.69068145751953, 49.78697967529297, 49.85338592529297],
|
27 |
+
"short_factor": [1.0004360675811768, 1.0668443441390991, 1.1631425619125366, 1.3025742769241333, 1.5040205717086792, 1.7941505908966064, 2.2101221084594727, 2.802666664123535, 3.6389970779418945, 4.804192543029785, 6.39855432510376, 8.527148246765137, 11.277542114257812, 14.684998512268066, 18.69317054748535, 23.13019371032715, 27.72362518310547, 32.1606559753418, 36.168827056884766, 39.57627868652344, 42.32667541503906, 44.45526885986328, 46.04962921142578, 47.21482849121094, 48.05115509033203, 48.64370346069336, 49.05967712402344, 49.34980392456055, 49.551246643066406, 49.69068145751953, 49.78697967529297, 49.85338592529297],
|
28 |
+
"original_max_position_embeddings": 32768
|
29 |
+
},
|
30 |
+
"torch_dtype": "bfloat16",
|
31 |
+
"transformers_version": "4.46.3",
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 73448,
|
34 |
+
"scale_emb": 12,
|
35 |
+
"dim_model_base": 256,
|
36 |
+
"scale_depth": 1.4
|
37 |
+
}
|
configuration_minicpm.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
4 |
+
# and OPT implementations in this library. It has been modified from its
|
5 |
+
# original forms to accommodate minor architectural differences compared
|
6 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
""" MiniCPM model configuration"""
|
20 |
+
|
21 |
+
from transformers.configuration_utils import PretrainedConfig
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
27 |
+
|
28 |
+
|
29 |
+
class MiniCPMConfig(PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
32 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
33 |
+
defaults will yield a similar configuration to that of the MiniCPM-7B.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
|
39 |
+
Args:
|
40 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
41 |
+
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
|
42 |
+
`inputs_ids` passed when calling [`MiniCPMModel`]
|
43 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
44 |
+
Dimension of the hidden representations.
|
45 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
46 |
+
Dimension of the MLP representations.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
48 |
+
Number of hidden layers in the Transformer decoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
51 |
+
num_key_value_heads (`int`, *optional*):
|
52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
58 |
+
`num_attention_heads`.
|
59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
60 |
+
The non-linear activation function (function or string) in the decoder.
|
61 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
62 |
+
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
|
63 |
+
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
67 |
+
The epsilon used by the rms normalization layers.
|
68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
70 |
+
relevant if `config.is_decoder=True`.
|
71 |
+
pad_token_id (`int`, *optional*):
|
72 |
+
Padding token id.
|
73 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
74 |
+
Beginning of stream token id.
|
75 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
76 |
+
End of stream token id.
|
77 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
78 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
79 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
80 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
81 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
82 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
83 |
+
Whether to tie weight embeddings
|
84 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
85 |
+
The base period of the RoPE embeddings.
|
86 |
+
rope_scaling (`Dict`, *optional*):
|
87 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
88 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
89 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
90 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
91 |
+
these scaling strategies behave:
|
92 |
+
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
93 |
+
experimental feature, subject to breaking API changes in future versions.
|
94 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
95 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
96 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
97 |
+
The dropout ratio for the attention probabilities.
|
98 |
+
|
99 |
+
```python
|
100 |
+
>>> from transformers import MiniCPMModel, MiniCPMConfig
|
101 |
+
|
102 |
+
>>> # Initializing a MiniCPM minicpm-7b style configuration
|
103 |
+
>>> configuration = MiniCPMConfig()
|
104 |
+
|
105 |
+
>>> # Initializing a model from the minicpm-7b style configuration
|
106 |
+
>>> model = MiniCPMModel(configuration)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> configuration = model.config
|
110 |
+
```"""
|
111 |
+
|
112 |
+
model_type = 'minicpm'
|
113 |
+
keys_to_ignore_at_inference = ['past_key_values']
|
114 |
+
|
115 |
+
def __init__(
|
116 |
+
self,
|
117 |
+
vocab_size=32000,
|
118 |
+
hidden_size=4096,
|
119 |
+
intermediate_size=11008,
|
120 |
+
num_hidden_layers=32,
|
121 |
+
num_attention_heads=32,
|
122 |
+
num_key_value_heads=None,
|
123 |
+
hidden_act='silu',
|
124 |
+
max_position_embeddings=2048,
|
125 |
+
initializer_range=0.02,
|
126 |
+
rms_norm_eps=1e-6,
|
127 |
+
use_cache=True,
|
128 |
+
pad_token_id=None,
|
129 |
+
bos_token_id=1,
|
130 |
+
eos_token_id=2,
|
131 |
+
pretraining_tp=1,
|
132 |
+
tie_word_embeddings=True,
|
133 |
+
rope_theta=10000.0,
|
134 |
+
rope_scaling=None,
|
135 |
+
attention_bias=False,
|
136 |
+
attention_dropout=0.0,
|
137 |
+
scale_emb=1,
|
138 |
+
dim_model_base=1,
|
139 |
+
scale_depth=1,
|
140 |
+
mup_denominator=None,
|
141 |
+
sparse_config=None,
|
142 |
+
**kwargs):
|
143 |
+
|
144 |
+
self.vocab_size = vocab_size
|
145 |
+
self.max_position_embeddings = max_position_embeddings
|
146 |
+
self.hidden_size = hidden_size
|
147 |
+
self.intermediate_size = intermediate_size
|
148 |
+
self.num_hidden_layers = num_hidden_layers
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
|
151 |
+
# for backward compatibility
|
152 |
+
if num_key_value_heads is None:
|
153 |
+
num_key_value_heads = num_attention_heads
|
154 |
+
|
155 |
+
self.num_key_value_heads = num_key_value_heads
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.initializer_range = initializer_range
|
158 |
+
self.rms_norm_eps = rms_norm_eps
|
159 |
+
self.pretraining_tp = pretraining_tp
|
160 |
+
self.use_cache = use_cache
|
161 |
+
self.rope_theta = rope_theta
|
162 |
+
self.rope_scaling = rope_scaling
|
163 |
+
# self._rope_scaling_validation()
|
164 |
+
self.attention_bias = attention_bias
|
165 |
+
self.attention_dropout = attention_dropout
|
166 |
+
self.scale_emb = scale_emb
|
167 |
+
self.dim_model_base = dim_model_base
|
168 |
+
self.scale_depth = scale_depth
|
169 |
+
# only used for Eagle Head
|
170 |
+
self.mup_denominator = mup_denominator
|
171 |
+
|
172 |
+
# sparse config
|
173 |
+
self.sparse_config = sparse_config
|
174 |
+
|
175 |
+
super().__init__(
|
176 |
+
pad_token_id=pad_token_id,
|
177 |
+
bos_token_id=bos_token_id,
|
178 |
+
eos_token_id=eos_token_id,
|
179 |
+
tie_word_embeddings=tie_word_embeddings,
|
180 |
+
**kwargs,
|
181 |
+
)
|
182 |
+
try:
|
183 |
+
import flash_attn
|
184 |
+
self._attn_implementation = 'flash_attention_2'
|
185 |
+
except:
|
186 |
+
pass
|
187 |
+
|
188 |
+
def _rope_scaling_validation(self):
|
189 |
+
"""
|
190 |
+
Validate the `rope_scaling` configuration.
|
191 |
+
"""
|
192 |
+
if self.rope_scaling is None:
|
193 |
+
return
|
194 |
+
|
195 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
196 |
+
raise ValueError(
|
197 |
+
'`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
|
198 |
+
f'got {self.rope_scaling}'
|
199 |
+
)
|
200 |
+
rope_scaling_type = self.rope_scaling.get('type', None)
|
201 |
+
rope_scaling_factor = self.rope_scaling.get('factor', None)
|
202 |
+
if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
|
203 |
+
raise ValueError(
|
204 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
205 |
+
)
|
206 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
207 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 1,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
2,
|
6 |
+
73440
|
7 |
+
],
|
8 |
+
"pad_token_id": 2,
|
9 |
+
"temperature": 0.8,
|
10 |
+
"top_p": 0.8,
|
11 |
+
"transformers_version": "4.46.1"
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0fa5ac145cb76786bc274f65325695eabdd3ef6e718bac1080db1093f6af44b
|
3 |
+
size 1735520504
|
modeling_minicpm.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>",
|
4 |
+
"<|im_start|>",
|
5 |
+
"<|tool_call|>",
|
6 |
+
"<|execute_start|>",
|
7 |
+
"<|execute_end|>",
|
8 |
+
"<|fim_prefix|>",
|
9 |
+
"<|fim_middle|>",
|
10 |
+
"<|fim_suffix|>"
|
11 |
+
],
|
12 |
+
"bos_token": {
|
13 |
+
"content": "<s>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false
|
18 |
+
},
|
19 |
+
"eos_token": {
|
20 |
+
"content": "<|im_end|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false
|
25 |
+
},
|
26 |
+
"unk_token": {
|
27 |
+
"content": "<unk>",
|
28 |
+
"lstrip": false,
|
29 |
+
"normalized": false,
|
30 |
+
"rstrip": false,
|
31 |
+
"single_word": false
|
32 |
+
}
|
33 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb74d51116831c3bf65db812c553f94ab0c88dcf97a5bbb37e3504f6d359c530
|
3 |
+
size 1181204
|
tokenizer_config.json
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
},
|
30 |
+
"73440": {
|
31 |
+
"content": "<|im_end|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"73441": {
|
39 |
+
"content": "<|im_start|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": true
|
45 |
+
},
|
46 |
+
"73442": {
|
47 |
+
"content": "<|tool_call|>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": true
|
53 |
+
},
|
54 |
+
"73443": {
|
55 |
+
"content": "<|execute_start|>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": true
|
61 |
+
},
|
62 |
+
"73444": {
|
63 |
+
"content": "<|execute_end|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"73445": {
|
71 |
+
"content": "<|fim_prefix|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"73446": {
|
79 |
+
"content": "<|fim_middle|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"73447": {
|
87 |
+
"content": "<|fim_suffix|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
}
|
94 |
+
},
|
95 |
+
"additional_special_tokens": [
|
96 |
+
"<|im_end|>",
|
97 |
+
"<|im_start|>",
|
98 |
+
"<|tool_call|>",
|
99 |
+
"<|execute_start|>",
|
100 |
+
"<|execute_end|>",
|
101 |
+
"<|fim_prefix|>",
|
102 |
+
"<|fim_middle|>",
|
103 |
+
"<|fim_suffix|>"
|
104 |
+
],
|
105 |
+
"bos_token": "<s>",
|
106 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
107 |
+
"clean_up_tokenization_spaces": false,
|
108 |
+
"eos_token": "<|im_end|>",
|
109 |
+
"legacy": true,
|
110 |
+
"model_max_length": 1000000000000000019884624838656,
|
111 |
+
"pad_token": null,
|
112 |
+
"sp_model_kwargs": {},
|
113 |
+
"spaces_between_special_tokens": false,
|
114 |
+
"tokenizer_class": "LlamaTokenizer",
|
115 |
+
"unk_token": "<unk>",
|
116 |
+
"use_default_system_prompt": false
|
117 |
+
}
|