Text Generation
Transformers
Safetensors
English
llava_llama
Inference Endpoints
File size: 2,987 Bytes
d2127c2
 
 
4d5da94
d2127c2
 
 
 
 
 
68291b0
d2127c2
e31668a
12c5206
9ef6abe
d2127c2
 
 
 
860fccc
 
81c848e
90e8e73
 
860fccc
 
 
90e8e73
860fccc
 
 
 
 
 
 
 
d2127c2
8c44cd5
d2127c2
 
860fccc
afcb2b6
 
 
 
 
6543b61
afcb2b6
 
6543b61
 
 
 
 
 
 
afcb2b6
90e8e73
 
6543b61
 
afcb2b6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
datasets:
- openbmb/RLAIF-V-Dataset
language:
- en
---

# Model Card for RLAIF-V

[GitHub ](https://github.com/RLHF-V/RLAIF-V) | [Paper](https://arxiv.org/abs/2405.17220)

**RLAIF-V-7B** is trained based on LLaVA 1.5 7B with the novel [RLAIF-V](https://github.com/RLHF-V/RLAIF-V) framework.
By aligning with human preference via large scale [AI feedback](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset), the model achieves **super GPT-4V trustworthiness**. 
RLAIF-V maximally exploits the open-source feedback from two key perspectives, including high-quality feedback data and an online feedback learning algorithm. 


## Model Details

### Key Features

* πŸ“ˆ **Most trustworthy LLaVA 1.5**: By learning from open-source AI feedback, specifically, the feedback from LLaVA-NeXT-34B, RLAIF-V-7B achieves the best trustworthiness improvement on LLaVA-v1.5 compared to other hallucination reduction methods.
* πŸ’ͺ **Maintaining Well Performance on General Abilities**: On benchmarks evaluating general capabilities (e.g. MMStar), RLAIF-V-7B also exhibits good performance.
* πŸš€ **Inference-time Scaling by Self-guidance**: Using RLAIF-V 7B as a reward model can further improve model performance on multiple benchmarks with best-of-N selection.


<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/dhsi5_okbtlBp2pfYOkFK.png" alt="fig1" width="90%"/>
</p>

### Examples
<p align="center">
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/Hyu2Et5CQtDFmxaYHKdu-.png" alt="fig2-1" width="80%"/>
  <img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/16mJpyH_-vnRfl8Ywfa6k.png" alt="fig2-1" width="80%"/>
</p>

### Model Description
- **Trained from model:** [llava-v1.5-7B](https://huggingface.co/liuhaotian/llava-v1.5-7b)
- **Trained on data:** [RLAIF-V-Dataset](https://huggingface.co/datasets/HaoyeZhang/RLAIF-V-Dataset)

## Usage
Please look at [GitHub](https://github.com/RLHF-V/RLAIF-V) for more details about usage.


## Citation

If you find our model/code/paper helpful, please consider cite our papers πŸ“:

```bibtex
@article{yu2023rlhf,
  title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback},
  author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others},
  journal={arXiv preprint arXiv:2312.00849},
  year={2023}
}

@article{yu2024rlaifv,
  title={RLAIF-V: Open-Source AI Feedback Leads to Super GPT-4V Trustworthiness}, 
  author={Tianyu Yu and Haoye Zhang and Qiming Li and Qixin Xu and Yuan Yao and Da Chen and Xiaoman Lu and Ganqu Cui and Yunkai Dang and Taiwen He and Xiaocheng Feng and Jun Song and Bo Zheng and Zhiyuan Liu and Tat-Seng Chua and Maosong Sun},
  journal={arXiv preprint arXiv:2405.17220},
  year={2024},
}
```