jacobbieker commited on
Commit
c6af802
·
verified ·
1 Parent(s): 3b29d9a

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +52 -0
  2. config.json +65 -0
  3. data_config.yaml +40 -0
  4. pytorch_model.bin +3 -0
README.md CHANGED
@@ -1,3 +1,55 @@
1
  ---
 
2
  license: mit
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
  license: mit
4
+ library_name: pytorch
5
  ---
6
+
7
+
8
+
9
+
10
+
11
+
12
+ # PVNet2
13
+
14
+ ## Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is/does. -->
17
+ This model class uses satellite data, numericl weather predictions, and recent Grid Service Point( GSP) PV power output to forecast the near-term (~8 hours) PV power output at all GSPs. More information can be found in the model repo [1] and experimental notes in [this google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing).
18
+
19
+ - **Developed by:** openclimatefix
20
+ - **Model type:** Fusion model
21
+ - **Language(s) (NLP):** en
22
+ - **License:** mit
23
+
24
+
25
+ # Training Details
26
+
27
+ ## Data
28
+
29
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
30
+
31
+ The model is trained on data from 2017-2020 and validated on data from 2021. See experimental notes in the [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing) for more details.
32
+
33
+
34
+ ### Preprocessing
35
+
36
+ Data is prepared with the `ocf_datapipes.training.pvnet` datapipe [2].
37
+
38
+
39
+ ## Results
40
+
41
+ The training logs for the current model can be found [here on wandb](https://wandb.ai/openclimatefix/pvnet2.1/runs/None).
42
+
43
+ The training logs for all model runs of PVNet2 can be found [here](https://wandb.ai/openclimatefix/pvnet2.1).
44
+
45
+ Some experimental notes can be found at in [the google doc](https://docs.google.com/document/d/1fbkfkBzp16WbnCg7RDuRDvgzInA6XQu3xh4NCjV-WDA/edit?usp=sharing)
46
+
47
+
48
+ ### Hardware
49
+
50
+ Trained on a single NVIDIA Tesla T4
51
+
52
+ ### Software
53
+
54
+ - [1] https://github.com/openclimatefix/PVNet
55
+ - [2] https://github.com/openclimatefix/ocf_datapipes
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_target_": "pvnet.models.multimodal.multimodal.Model",
3
+ "output_quantiles": [
4
+ 0.02,
5
+ 0.1,
6
+ 0.25,
7
+ 0.5,
8
+ 0.75,
9
+ 0.9,
10
+ 0.98
11
+ ],
12
+ "interval_minutes": 15,
13
+ "nwp_encoders_dict": {
14
+ "ecmwf": {
15
+ "_target_": "pvnet.models.multimodal.encoders.encoders3d.DefaultPVNet",
16
+ "_partial_": true,
17
+ "in_channels": 14,
18
+ "out_features": 256,
19
+ "number_of_conv3d_layers": 6,
20
+ "conv3d_channels": 32,
21
+ "image_size_pixels": 32
22
+ }
23
+ },
24
+ "wind_encoder": {
25
+ "_target_": "pvnet.models.multimodal.site_encoders.encoders.SingleAttentionNetwork",
26
+ "_partial_": true,
27
+ "num_sites": 1,
28
+ "out_features": 40,
29
+ "num_heads": 4,
30
+ "kdim": 40,
31
+ "id_embed_dim": 20
32
+ },
33
+ "output_network": {
34
+ "_target_": "pvnet.models.multimodal.linear_networks.networks.ResFCNet2",
35
+ "_partial_": true,
36
+ "fc_hidden_features": 128,
37
+ "n_res_blocks": 6,
38
+ "res_block_layers": 2,
39
+ "dropout_frac": 0.0
40
+ },
41
+ "embedding_dim": 16,
42
+ "include_sun": false,
43
+ "include_gsp_yield_history": false,
44
+ "forecast_minutes": 2880,
45
+ "history_minutes": 60,
46
+ "min_sat_delay_minutes": 60,
47
+ "sat_history_minutes": 90,
48
+ "nwp_history_minutes": {
49
+ "ecmwf": 60
50
+ },
51
+ "nwp_forecast_minutes": {
52
+ "ecmwf": 2880
53
+ },
54
+ "wind_history_minutes": 60,
55
+ "target_key": "wind",
56
+ "optimizer": {
57
+ "_target_": "pvnet.optimizers.EmbAdamWReduceLROnPlateau",
58
+ "lr": 0.0001,
59
+ "weight_decay": 0.01,
60
+ "amsgrad": true,
61
+ "patience": 5,
62
+ "factor": 0.1,
63
+ "threshold": 0.002
64
+ }
65
+ }
data_config.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ general:
2
+ description: Config for training the saved PVNet model
3
+ name: PVNet current
4
+ input_data:
5
+ data_source_which_defines_geospatial_locations: wind
6
+ default_forecast_minutes: 2880
7
+ default_history_minutes: 60
8
+ nwp:
9
+ ecmwf:
10
+ forecast_minutes: 2880
11
+ history_minutes: 60
12
+ nwp_channels:
13
+ - hcc
14
+ - lcc
15
+ - mcc
16
+ - prate
17
+ - sde
18
+ - sr
19
+ - t2m
20
+ - tcc
21
+ - u10
22
+ - u100
23
+ - u200
24
+ - v10
25
+ - v100
26
+ - v200
27
+ nwp_image_size_pixels_height: 32
28
+ nwp_image_size_pixels_width: 32
29
+ nwp_provider: ecmwf
30
+ nwp_zarr_path: PLACEHOLDER.zarr
31
+ time_resolution_minutes: 60
32
+ x_dim_name: longitude
33
+ y_dim_name: latitude
34
+ wind:
35
+ get_center: true
36
+ n_wind_systems_per_example: 1
37
+ wind_files_groups:
38
+ - label: india
39
+ wind_filename: /mnt/storage_ssd_4tb/india_wind_data.nc
40
+ wind_metadata_filename: /mnt/storage_ssd_4tb/india_wind_metadata.csv
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6375c39f86d26aa0819ddf8d50e36f74b0870a2f56f1eb356154c8352ae6943
3
+ size 330267466