raphael0202 commited on
Commit
b85ef44
·
verified ·
1 Parent(s): d203819

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +266 -3
README.md CHANGED
@@ -1,3 +1,266 @@
1
- ---
2
- license: agpl-3.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-large
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: nutrition-extractor
13
+ results: []
14
+ ---
15
+
16
+ # nutrition-extractor
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlmv3-large](https://huggingface.co/microsoft/layoutlmv3-large) on the
19
+ [v5 of the nutrient extraction dataset](https://huggingface.co/datasets/openfoodfacts/nutrient-detection-layout).
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0773
22
+ - Precision: 0.9403
23
+ - Recall: 0.9464
24
+ - F1: 0.9433
25
+ - Accuracy: 0.9888
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 1e-05
45
+ - train_batch_size: 4
46
+ - eval_batch_size: 4
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 8
49
+ - total_train_batch_size: 32
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - training_steps: 3000
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 1.9661 | 0.1896 | 15 | 1.1509 | 0.0 | 0.0 | 0.0 | 0.8105 |
60
+ | 0.9772 | 0.3791 | 30 | 0.8344 | 0.0452 | 0.0079 | 0.0134 | 0.8130 |
61
+ | 0.8483 | 0.5687 | 45 | 0.6955 | 0.1203 | 0.1271 | 0.1236 | 0.8443 |
62
+ | 0.6646 | 0.7583 | 60 | 0.6043 | 0.1366 | 0.1890 | 0.1586 | 0.8586 |
63
+ | 0.6051 | 0.9479 | 75 | 0.5304 | 0.2540 | 0.3138 | 0.2808 | 0.8792 |
64
+ | 0.5079 | 1.1374 | 90 | 0.4677 | 0.3022 | 0.3683 | 0.3320 | 0.8869 |
65
+ | 0.4924 | 1.3270 | 105 | 0.4053 | 0.3902 | 0.4566 | 0.4208 | 0.9011 |
66
+ | 0.4113 | 1.5166 | 120 | 0.3613 | 0.4406 | 0.5037 | 0.4700 | 0.9081 |
67
+ | 0.3866 | 1.7062 | 135 | 0.3171 | 0.4975 | 0.5582 | 0.5261 | 0.9216 |
68
+ | 0.3464 | 1.8957 | 150 | 0.2863 | 0.5246 | 0.6109 | 0.5645 | 0.9303 |
69
+ | 0.3171 | 2.0853 | 165 | 0.2557 | 0.5986 | 0.6918 | 0.6418 | 0.9458 |
70
+ | 0.2938 | 2.2749 | 180 | 0.2342 | 0.6400 | 0.7149 | 0.6754 | 0.9492 |
71
+ | 0.2678 | 2.4645 | 195 | 0.2214 | 0.6571 | 0.7518 | 0.7013 | 0.9536 |
72
+ | 0.2362 | 2.6540 | 210 | 0.2066 | 0.6873 | 0.7588 | 0.7213 | 0.9566 |
73
+ | 0.2175 | 2.8436 | 225 | 0.1944 | 0.7137 | 0.7810 | 0.7458 | 0.9593 |
74
+ | 0.2128 | 3.0332 | 240 | 0.1820 | 0.7432 | 0.8184 | 0.7790 | 0.9646 |
75
+ | 0.1968 | 3.2227 | 255 | 0.1728 | 0.7592 | 0.8202 | 0.7885 | 0.9662 |
76
+ | 0.185 | 3.4123 | 270 | 0.1656 | 0.7667 | 0.8276 | 0.7960 | 0.9675 |
77
+ | 0.1702 | 3.6019 | 285 | 0.1640 | 0.7512 | 0.8161 | 0.7823 | 0.9655 |
78
+ | 0.1686 | 3.7915 | 300 | 0.1541 | 0.7831 | 0.8341 | 0.8078 | 0.9675 |
79
+ | 0.1671 | 3.9810 | 315 | 0.1527 | 0.7696 | 0.8383 | 0.8025 | 0.9679 |
80
+ | 0.1532 | 4.1706 | 330 | 0.1421 | 0.8114 | 0.8567 | 0.8334 | 0.9710 |
81
+ | 0.1505 | 4.3602 | 345 | 0.1301 | 0.8185 | 0.8646 | 0.8409 | 0.9727 |
82
+ | 0.126 | 4.5498 | 360 | 0.1274 | 0.8330 | 0.8688 | 0.8505 | 0.9746 |
83
+ | 0.128 | 4.7393 | 375 | 0.1166 | 0.8395 | 0.8771 | 0.8579 | 0.9757 |
84
+ | 0.1313 | 4.9289 | 390 | 0.1158 | 0.8583 | 0.8872 | 0.8725 | 0.9767 |
85
+ | 0.1112 | 5.1185 | 405 | 0.1140 | 0.8447 | 0.8794 | 0.8617 | 0.9752 |
86
+ | 0.0968 | 5.3081 | 420 | 0.1002 | 0.8646 | 0.8970 | 0.8805 | 0.9787 |
87
+ | 0.1129 | 5.4976 | 435 | 0.0993 | 0.8605 | 0.8919 | 0.8759 | 0.9786 |
88
+ | 0.1109 | 5.6872 | 450 | 0.0974 | 0.8517 | 0.8812 | 0.8662 | 0.9779 |
89
+ | 0.0868 | 5.8768 | 465 | 0.0957 | 0.8741 | 0.9043 | 0.8889 | 0.9801 |
90
+ | 0.1022 | 6.0664 | 480 | 0.0922 | 0.8778 | 0.9099 | 0.8936 | 0.9808 |
91
+ | 0.0814 | 6.2559 | 495 | 0.0890 | 0.8821 | 0.9025 | 0.8922 | 0.9806 |
92
+ | 0.0843 | 6.4455 | 510 | 0.0946 | 0.8847 | 0.9039 | 0.8942 | 0.9809 |
93
+ | 0.0803 | 6.6351 | 525 | 0.0846 | 0.8951 | 0.9145 | 0.9047 | 0.9826 |
94
+ | 0.0936 | 6.8246 | 540 | 0.0856 | 0.8893 | 0.9168 | 0.9028 | 0.9823 |
95
+ | 0.08 | 7.0142 | 555 | 0.0806 | 0.8990 | 0.9168 | 0.9078 | 0.9831 |
96
+ | 0.0672 | 7.2038 | 570 | 0.0839 | 0.8859 | 0.9117 | 0.8987 | 0.9822 |
97
+ | 0.0675 | 7.3934 | 585 | 0.0836 | 0.8903 | 0.9150 | 0.9025 | 0.9827 |
98
+ | 0.0757 | 7.5829 | 600 | 0.0837 | 0.8927 | 0.9191 | 0.9057 | 0.9830 |
99
+ | 0.0719 | 7.7725 | 615 | 0.0803 | 0.8998 | 0.9214 | 0.9105 | 0.9833 |
100
+ | 0.0671 | 7.9621 | 630 | 0.0831 | 0.8985 | 0.9201 | 0.9091 | 0.9831 |
101
+ | 0.0661 | 8.1517 | 645 | 0.0760 | 0.9061 | 0.9228 | 0.9144 | 0.9840 |
102
+ | 0.051 | 8.3412 | 660 | 0.0780 | 0.9121 | 0.9302 | 0.9211 | 0.9848 |
103
+ | 0.0524 | 8.5308 | 675 | 0.0805 | 0.9071 | 0.9247 | 0.9158 | 0.9851 |
104
+ | 0.067 | 8.7204 | 690 | 0.0768 | 0.9050 | 0.9242 | 0.9145 | 0.9846 |
105
+ | 0.0647 | 8.9100 | 705 | 0.0802 | 0.9135 | 0.9274 | 0.9204 | 0.9844 |
106
+ | 0.0581 | 9.0995 | 720 | 0.0721 | 0.9064 | 0.9214 | 0.9138 | 0.9846 |
107
+ | 0.0461 | 9.2891 | 735 | 0.0762 | 0.9044 | 0.9307 | 0.9173 | 0.9850 |
108
+ | 0.0496 | 9.4787 | 750 | 0.0748 | 0.9120 | 0.9288 | 0.9203 | 0.9851 |
109
+ | 0.0495 | 9.6682 | 765 | 0.0799 | 0.9126 | 0.9311 | 0.9218 | 0.9854 |
110
+ | 0.0523 | 9.8578 | 780 | 0.0772 | 0.9103 | 0.9335 | 0.9217 | 0.9856 |
111
+ | 0.0517 | 10.0474 | 795 | 0.0809 | 0.9120 | 0.9238 | 0.9178 | 0.9847 |
112
+ | 0.0411 | 10.2370 | 810 | 0.0792 | 0.9118 | 0.9316 | 0.9216 | 0.9860 |
113
+ | 0.0435 | 10.4265 | 825 | 0.0735 | 0.9157 | 0.9339 | 0.9247 | 0.9855 |
114
+ | 0.0393 | 10.6161 | 840 | 0.0729 | 0.9095 | 0.9293 | 0.9193 | 0.9853 |
115
+ | 0.0445 | 10.8057 | 855 | 0.0761 | 0.9069 | 0.9316 | 0.9191 | 0.9856 |
116
+ | 0.0432 | 10.9953 | 870 | 0.0739 | 0.9056 | 0.9307 | 0.9180 | 0.9851 |
117
+ | 0.0387 | 11.1848 | 885 | 0.0699 | 0.9146 | 0.9348 | 0.9246 | 0.9869 |
118
+ | 0.042 | 11.3744 | 900 | 0.0711 | 0.9187 | 0.9298 | 0.9242 | 0.9863 |
119
+ | 0.0374 | 11.5640 | 915 | 0.0697 | 0.9210 | 0.9325 | 0.9268 | 0.9864 |
120
+ | 0.0328 | 11.7536 | 930 | 0.0746 | 0.9111 | 0.9325 | 0.9217 | 0.9861 |
121
+ | 0.0403 | 11.9431 | 945 | 0.0749 | 0.9131 | 0.9325 | 0.9227 | 0.9857 |
122
+ | 0.0327 | 12.1327 | 960 | 0.0731 | 0.9191 | 0.9395 | 0.9292 | 0.9868 |
123
+ | 0.0284 | 12.3223 | 975 | 0.0738 | 0.9172 | 0.9372 | 0.9271 | 0.9862 |
124
+ | 0.0314 | 12.5118 | 990 | 0.0711 | 0.9253 | 0.9330 | 0.9291 | 0.9867 |
125
+ | 0.0342 | 12.7014 | 1005 | 0.0775 | 0.9254 | 0.9339 | 0.9296 | 0.9862 |
126
+ | 0.038 | 12.8910 | 1020 | 0.0725 | 0.9271 | 0.9348 | 0.9310 | 0.9864 |
127
+ | 0.0262 | 13.0806 | 1035 | 0.0756 | 0.9313 | 0.9330 | 0.9321 | 0.9869 |
128
+ | 0.0282 | 13.2701 | 1050 | 0.0734 | 0.9215 | 0.9385 | 0.9299 | 0.9869 |
129
+ | 0.0251 | 13.4597 | 1065 | 0.0701 | 0.9254 | 0.9395 | 0.9324 | 0.9872 |
130
+ | 0.0304 | 13.6493 | 1080 | 0.0712 | 0.9296 | 0.9395 | 0.9345 | 0.9873 |
131
+ | 0.0327 | 13.8389 | 1095 | 0.0746 | 0.9209 | 0.9362 | 0.9285 | 0.9867 |
132
+ | 0.0318 | 14.0284 | 1110 | 0.0721 | 0.9265 | 0.9325 | 0.9295 | 0.9870 |
133
+ | 0.0293 | 14.2180 | 1125 | 0.0739 | 0.9290 | 0.9376 | 0.9333 | 0.9869 |
134
+ | 0.0251 | 14.4076 | 1140 | 0.0753 | 0.9281 | 0.9372 | 0.9326 | 0.9869 |
135
+ | 0.0269 | 14.5972 | 1155 | 0.0769 | 0.9205 | 0.9362 | 0.9283 | 0.9862 |
136
+ | 0.0263 | 14.7867 | 1170 | 0.0745 | 0.9209 | 0.9358 | 0.9283 | 0.9866 |
137
+ | 0.0239 | 14.9763 | 1185 | 0.0754 | 0.9298 | 0.9372 | 0.9335 | 0.9876 |
138
+ | 0.0214 | 15.1659 | 1200 | 0.0756 | 0.9298 | 0.9367 | 0.9332 | 0.9873 |
139
+ | 0.0218 | 15.3555 | 1215 | 0.0759 | 0.9294 | 0.9372 | 0.9333 | 0.9875 |
140
+ | 0.0212 | 15.5450 | 1230 | 0.0744 | 0.9275 | 0.9344 | 0.9309 | 0.9871 |
141
+ | 0.0243 | 15.7346 | 1245 | 0.0716 | 0.9224 | 0.9395 | 0.9309 | 0.9875 |
142
+ | 0.0268 | 15.9242 | 1260 | 0.0730 | 0.9220 | 0.9399 | 0.9309 | 0.9869 |
143
+ | 0.0229 | 16.1137 | 1275 | 0.0755 | 0.9170 | 0.9395 | 0.9281 | 0.9867 |
144
+ | 0.0201 | 16.3033 | 1290 | 0.0714 | 0.9300 | 0.9390 | 0.9345 | 0.9879 |
145
+ | 0.0224 | 16.4929 | 1305 | 0.0693 | 0.9297 | 0.9413 | 0.9355 | 0.9878 |
146
+ | 0.0243 | 16.6825 | 1320 | 0.0699 | 0.9253 | 0.9450 | 0.9351 | 0.9878 |
147
+ | 0.022 | 16.8720 | 1335 | 0.0733 | 0.9192 | 0.9404 | 0.9296 | 0.9868 |
148
+ | 0.0207 | 17.0616 | 1350 | 0.0685 | 0.9329 | 0.9376 | 0.9352 | 0.9884 |
149
+ | 0.0211 | 17.2512 | 1365 | 0.0749 | 0.9314 | 0.9418 | 0.9366 | 0.9877 |
150
+ | 0.0188 | 17.4408 | 1380 | 0.0731 | 0.9323 | 0.9418 | 0.9370 | 0.9876 |
151
+ | 0.0187 | 17.6303 | 1395 | 0.0734 | 0.9330 | 0.9390 | 0.9360 | 0.9878 |
152
+ | 0.0203 | 17.8199 | 1410 | 0.0732 | 0.9357 | 0.9409 | 0.9382 | 0.9879 |
153
+ | 0.0204 | 18.0095 | 1425 | 0.0729 | 0.9306 | 0.9418 | 0.9362 | 0.9878 |
154
+ | 0.0151 | 18.1991 | 1440 | 0.0718 | 0.9285 | 0.9418 | 0.9351 | 0.9879 |
155
+ | 0.016 | 18.3886 | 1455 | 0.0730 | 0.9309 | 0.9404 | 0.9356 | 0.9879 |
156
+ | 0.0225 | 18.5782 | 1470 | 0.0743 | 0.9326 | 0.9404 | 0.9365 | 0.9877 |
157
+ | 0.0158 | 18.7678 | 1485 | 0.0759 | 0.9298 | 0.9427 | 0.9362 | 0.9875 |
158
+ | 0.0169 | 18.9573 | 1500 | 0.0780 | 0.9348 | 0.9409 | 0.9378 | 0.9883 |
159
+ | 0.0167 | 19.1469 | 1515 | 0.0790 | 0.9347 | 0.9399 | 0.9373 | 0.9877 |
160
+ | 0.0163 | 19.3365 | 1530 | 0.0743 | 0.9336 | 0.9422 | 0.9379 | 0.9875 |
161
+ | 0.0158 | 19.5261 | 1545 | 0.0737 | 0.9370 | 0.9413 | 0.9391 | 0.9883 |
162
+ | 0.0183 | 19.7156 | 1560 | 0.0766 | 0.9247 | 0.9418 | 0.9332 | 0.9870 |
163
+ | 0.0154 | 19.9052 | 1575 | 0.0770 | 0.9322 | 0.9409 | 0.9365 | 0.9875 |
164
+ | 0.018 | 20.0948 | 1590 | 0.0758 | 0.9298 | 0.9432 | 0.9365 | 0.9873 |
165
+ | 0.0142 | 20.2844 | 1605 | 0.0744 | 0.9255 | 0.9413 | 0.9333 | 0.9877 |
166
+ | 0.0151 | 20.4739 | 1620 | 0.0730 | 0.9323 | 0.9418 | 0.9370 | 0.9883 |
167
+ | 0.018 | 20.6635 | 1635 | 0.0727 | 0.9321 | 0.9455 | 0.9387 | 0.9886 |
168
+ | 0.0137 | 20.8531 | 1650 | 0.0708 | 0.9375 | 0.9427 | 0.9401 | 0.9887 |
169
+ | 0.0139 | 21.0427 | 1665 | 0.0714 | 0.9330 | 0.9459 | 0.9394 | 0.9885 |
170
+ | 0.0134 | 21.2322 | 1680 | 0.0699 | 0.9322 | 0.9404 | 0.9363 | 0.9883 |
171
+ | 0.0155 | 21.4218 | 1695 | 0.0713 | 0.9330 | 0.9455 | 0.9392 | 0.9886 |
172
+ | 0.0142 | 21.6114 | 1710 | 0.0711 | 0.9365 | 0.9473 | 0.9419 | 0.9887 |
173
+ | 0.0147 | 21.8009 | 1725 | 0.0701 | 0.9335 | 0.9464 | 0.9399 | 0.9887 |
174
+ | 0.0129 | 21.9905 | 1740 | 0.0700 | 0.9364 | 0.9459 | 0.9411 | 0.9886 |
175
+ | 0.0131 | 22.1801 | 1755 | 0.0737 | 0.9399 | 0.9399 | 0.9399 | 0.9880 |
176
+ | 0.0121 | 22.3697 | 1770 | 0.0726 | 0.9312 | 0.9441 | 0.9376 | 0.9883 |
177
+ | 0.0133 | 22.5592 | 1785 | 0.0733 | 0.9249 | 0.9450 | 0.9349 | 0.9878 |
178
+ | 0.0126 | 22.7488 | 1800 | 0.0753 | 0.9331 | 0.9409 | 0.9370 | 0.9878 |
179
+ | 0.0133 | 22.9384 | 1815 | 0.0738 | 0.9286 | 0.9436 | 0.9361 | 0.9882 |
180
+ | 0.0113 | 23.1280 | 1830 | 0.0733 | 0.9327 | 0.9413 | 0.9370 | 0.9882 |
181
+ | 0.012 | 23.3175 | 1845 | 0.0774 | 0.9413 | 0.9413 | 0.9413 | 0.9884 |
182
+ | 0.0109 | 23.5071 | 1860 | 0.0772 | 0.9414 | 0.9427 | 0.9420 | 0.9887 |
183
+ | 0.0135 | 23.6967 | 1875 | 0.0782 | 0.9386 | 0.9390 | 0.9388 | 0.9879 |
184
+ | 0.0122 | 23.8863 | 1890 | 0.0767 | 0.9368 | 0.9385 | 0.9377 | 0.9880 |
185
+ | 0.0109 | 24.0758 | 1905 | 0.0763 | 0.9406 | 0.9445 | 0.9426 | 0.9887 |
186
+ | 0.0117 | 24.2654 | 1920 | 0.0763 | 0.9430 | 0.9404 | 0.9417 | 0.9884 |
187
+ | 0.013 | 24.4550 | 1935 | 0.0741 | 0.9415 | 0.9441 | 0.9428 | 0.9885 |
188
+ | 0.0092 | 24.6445 | 1950 | 0.0768 | 0.9326 | 0.9469 | 0.9397 | 0.9885 |
189
+ | 0.0101 | 24.8341 | 1965 | 0.0737 | 0.9328 | 0.9422 | 0.9375 | 0.9884 |
190
+ | 0.0092 | 25.0237 | 1980 | 0.0732 | 0.9385 | 0.9455 | 0.9420 | 0.9887 |
191
+ | 0.0084 | 25.2133 | 1995 | 0.0738 | 0.9331 | 0.9478 | 0.9404 | 0.9886 |
192
+ | 0.0088 | 25.4028 | 2010 | 0.0769 | 0.9365 | 0.9399 | 0.9382 | 0.9881 |
193
+ | 0.0116 | 25.5924 | 2025 | 0.0739 | 0.9402 | 0.9445 | 0.9424 | 0.9886 |
194
+ | 0.0101 | 25.7820 | 2040 | 0.0733 | 0.9399 | 0.9473 | 0.9436 | 0.9890 |
195
+ | 0.0122 | 25.9716 | 2055 | 0.0759 | 0.9375 | 0.9432 | 0.9403 | 0.9883 |
196
+ | 0.0098 | 26.1611 | 2070 | 0.0762 | 0.9415 | 0.9445 | 0.9430 | 0.9884 |
197
+ | 0.0088 | 26.3507 | 2085 | 0.0776 | 0.9393 | 0.9432 | 0.9412 | 0.9880 |
198
+ | 0.01 | 26.5403 | 2100 | 0.0769 | 0.9354 | 0.9427 | 0.9390 | 0.9878 |
199
+ | 0.0112 | 26.7299 | 2115 | 0.0750 | 0.9375 | 0.9422 | 0.9398 | 0.9881 |
200
+ | 0.0087 | 26.9194 | 2130 | 0.0745 | 0.9389 | 0.9441 | 0.9415 | 0.9883 |
201
+ | 0.0076 | 27.1090 | 2145 | 0.0728 | 0.9372 | 0.9445 | 0.9409 | 0.9885 |
202
+ | 0.0091 | 27.2986 | 2160 | 0.0749 | 0.9401 | 0.9436 | 0.9419 | 0.9886 |
203
+ | 0.01 | 27.4882 | 2175 | 0.0766 | 0.9414 | 0.9436 | 0.9425 | 0.9886 |
204
+ | 0.008 | 27.6777 | 2190 | 0.0774 | 0.9401 | 0.9432 | 0.9416 | 0.9885 |
205
+ | 0.0095 | 27.8673 | 2205 | 0.0784 | 0.9419 | 0.9436 | 0.9428 | 0.9886 |
206
+ | 0.0109 | 28.0569 | 2220 | 0.0776 | 0.9329 | 0.9450 | 0.9389 | 0.9883 |
207
+ | 0.0088 | 28.2464 | 2235 | 0.0794 | 0.9357 | 0.9413 | 0.9385 | 0.9879 |
208
+ | 0.0068 | 28.4360 | 2250 | 0.0800 | 0.9389 | 0.9441 | 0.9415 | 0.9886 |
209
+ | 0.0097 | 28.6256 | 2265 | 0.0817 | 0.9400 | 0.9418 | 0.9409 | 0.9880 |
210
+ | 0.0075 | 28.8152 | 2280 | 0.0804 | 0.9403 | 0.9395 | 0.9399 | 0.9878 |
211
+ | 0.0103 | 29.0047 | 2295 | 0.0750 | 0.9338 | 0.9450 | 0.9394 | 0.9887 |
212
+ | 0.01 | 29.1943 | 2310 | 0.0749 | 0.9333 | 0.9441 | 0.9387 | 0.9887 |
213
+ | 0.0087 | 29.3839 | 2325 | 0.0754 | 0.9368 | 0.9450 | 0.9409 | 0.9886 |
214
+ | 0.0092 | 29.5735 | 2340 | 0.0758 | 0.9374 | 0.9418 | 0.9396 | 0.9881 |
215
+ | 0.008 | 29.7630 | 2355 | 0.0776 | 0.9368 | 0.9445 | 0.9406 | 0.9884 |
216
+ | 0.0065 | 29.9526 | 2370 | 0.0781 | 0.9384 | 0.9427 | 0.9405 | 0.9883 |
217
+ | 0.0076 | 30.1422 | 2385 | 0.0776 | 0.9372 | 0.9445 | 0.9409 | 0.9886 |
218
+ | 0.0087 | 30.3318 | 2400 | 0.0768 | 0.9340 | 0.9418 | 0.9379 | 0.9883 |
219
+ | 0.0064 | 30.5213 | 2415 | 0.0766 | 0.9368 | 0.9445 | 0.9406 | 0.9883 |
220
+ | 0.0083 | 30.7109 | 2430 | 0.0779 | 0.9355 | 0.9385 | 0.9370 | 0.9881 |
221
+ | 0.0086 | 30.9005 | 2445 | 0.0756 | 0.9348 | 0.9409 | 0.9378 | 0.9879 |
222
+ | 0.0073 | 31.0900 | 2460 | 0.0753 | 0.9351 | 0.9450 | 0.9400 | 0.9884 |
223
+ | 0.0082 | 31.2796 | 2475 | 0.0763 | 0.9402 | 0.9441 | 0.9421 | 0.9884 |
224
+ | 0.0058 | 31.4692 | 2490 | 0.0759 | 0.9411 | 0.9455 | 0.9433 | 0.9890 |
225
+ | 0.0071 | 31.6588 | 2505 | 0.0766 | 0.9388 | 0.9432 | 0.9410 | 0.9886 |
226
+ | 0.008 | 31.8483 | 2520 | 0.0774 | 0.9366 | 0.9418 | 0.9392 | 0.9882 |
227
+ | 0.0084 | 32.0379 | 2535 | 0.0771 | 0.9390 | 0.9464 | 0.9427 | 0.9890 |
228
+ | 0.0058 | 32.2275 | 2550 | 0.0766 | 0.9400 | 0.9478 | 0.9439 | 0.9892 |
229
+ | 0.0079 | 32.4171 | 2565 | 0.0777 | 0.9354 | 0.9432 | 0.9393 | 0.9884 |
230
+ | 0.0066 | 32.6066 | 2580 | 0.0770 | 0.9394 | 0.9459 | 0.9427 | 0.9889 |
231
+ | 0.0068 | 32.7962 | 2595 | 0.0755 | 0.9364 | 0.9455 | 0.9409 | 0.9889 |
232
+ | 0.0071 | 32.9858 | 2610 | 0.0742 | 0.9358 | 0.9436 | 0.9397 | 0.9887 |
233
+ | 0.0105 | 33.1754 | 2625 | 0.0748 | 0.9341 | 0.9427 | 0.9384 | 0.9885 |
234
+ | 0.006 | 33.3649 | 2640 | 0.0753 | 0.9386 | 0.9464 | 0.9425 | 0.9889 |
235
+ | 0.0075 | 33.5545 | 2655 | 0.0748 | 0.9390 | 0.9455 | 0.9422 | 0.9889 |
236
+ | 0.0068 | 33.7441 | 2670 | 0.0757 | 0.9381 | 0.9455 | 0.9418 | 0.9889 |
237
+ | 0.0061 | 33.9336 | 2685 | 0.0757 | 0.9360 | 0.9455 | 0.9407 | 0.9888 |
238
+ | 0.0074 | 34.1232 | 2700 | 0.0753 | 0.9364 | 0.9450 | 0.9407 | 0.9885 |
239
+ | 0.006 | 34.3128 | 2715 | 0.0760 | 0.9362 | 0.9432 | 0.9397 | 0.9884 |
240
+ | 0.0064 | 34.5024 | 2730 | 0.0759 | 0.9364 | 0.9459 | 0.9411 | 0.9888 |
241
+ | 0.0055 | 34.6919 | 2745 | 0.0760 | 0.9368 | 0.9445 | 0.9406 | 0.9889 |
242
+ | 0.0063 | 34.8815 | 2760 | 0.0767 | 0.9375 | 0.9432 | 0.9403 | 0.9886 |
243
+ | 0.0065 | 35.0711 | 2775 | 0.0769 | 0.9385 | 0.9445 | 0.9415 | 0.9888 |
244
+ | 0.0075 | 35.2607 | 2790 | 0.0767 | 0.9407 | 0.9464 | 0.9436 | 0.9889 |
245
+ | 0.0067 | 35.4502 | 2805 | 0.0767 | 0.9399 | 0.9459 | 0.9429 | 0.9888 |
246
+ | 0.0058 | 35.6398 | 2820 | 0.0771 | 0.9403 | 0.9455 | 0.9429 | 0.9886 |
247
+ | 0.0044 | 35.8294 | 2835 | 0.0775 | 0.9406 | 0.9445 | 0.9426 | 0.9884 |
248
+ | 0.0062 | 36.0190 | 2850 | 0.0776 | 0.9398 | 0.9445 | 0.9422 | 0.9885 |
249
+ | 0.0067 | 36.2085 | 2865 | 0.0778 | 0.9411 | 0.9450 | 0.9430 | 0.9886 |
250
+ | 0.0073 | 36.3981 | 2880 | 0.0773 | 0.9408 | 0.9469 | 0.9438 | 0.9888 |
251
+ | 0.0057 | 36.5877 | 2895 | 0.0773 | 0.9412 | 0.9464 | 0.9438 | 0.9887 |
252
+ | 0.0062 | 36.7773 | 2910 | 0.0773 | 0.9398 | 0.9455 | 0.9426 | 0.9887 |
253
+ | 0.0056 | 36.9668 | 2925 | 0.0773 | 0.9390 | 0.9459 | 0.9424 | 0.9887 |
254
+ | 0.006 | 37.1564 | 2940 | 0.0772 | 0.9390 | 0.9464 | 0.9427 | 0.9889 |
255
+ | 0.007 | 37.3460 | 2955 | 0.0773 | 0.9394 | 0.9464 | 0.9429 | 0.9888 |
256
+ | 0.0066 | 37.5355 | 2970 | 0.0773 | 0.9399 | 0.9464 | 0.9431 | 0.9889 |
257
+ | 0.0066 | 37.7251 | 2985 | 0.0773 | 0.9399 | 0.9464 | 0.9431 | 0.9889 |
258
+ | 0.0067 | 37.9147 | 3000 | 0.0773 | 0.9403 | 0.9464 | 0.9433 | 0.9888 |
259
+
260
+
261
+ ### Framework versions
262
+
263
+ - Transformers 4.40.2
264
+ - Pytorch 2.4.1
265
+ - Datasets 2.19.0
266
+ - Tokenizers 0.19.1