arthurbr11 commited on
Commit
cf44a30
·
1 Parent(s): 37f8b09

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md CHANGED
@@ -9,6 +9,14 @@ tags:
9
  - passage-retrieval
10
  - document-expansion
11
  - bag-of-words
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  # opensearch-neural-sparse-encoding-doc-v1
@@ -36,6 +44,52 @@ This model is trained on MS MARCO dataset.
36
 
37
  OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  ## Usage (HuggingFace)
40
  This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
41
 
 
9
  - passage-retrieval
10
  - document-expansion
11
  - bag-of-words
12
+ - sentence-transformers
13
+ - sparse-encoder
14
+ - sparse
15
+ - asymmetric
16
+ - inference-free
17
+ - splade
18
+ pipeline_tag: feature-extraction
19
+ library_name: sentence-transformers
20
  ---
21
 
22
  # opensearch-neural-sparse-encoding-doc-v1
 
44
 
45
  OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
46
 
47
+ ## Usage (Sentence Transformers)
48
+
49
+ First install the Sentence Transformers library:
50
+
51
+ ```bash
52
+ pip install -U sentence-transformers
53
+ ```
54
+
55
+ Then you can load this model and run inference.
56
+
57
+ ```python
58
+
59
+ from sentence_transformers.sparse_encoder import SparseEncoder
60
+
61
+ # Download from the 🤗 Hub
62
+ model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v1")
63
+
64
+ query = "What's the weather in ny now?"
65
+ document = "Currently New York is rainy."
66
+
67
+ query_embed = model.encode_query(query)
68
+ document_embed = model.encode_document(document)
69
+
70
+ sim = model.similarity(query_embed, document_embed)
71
+ print(f"Similarity: {sim}")
72
+ # Similarity: tensor([[12.8465]])
73
+
74
+ # Visualize top tokens for each text
75
+ top_k = 3
76
+ print(f"\nTop tokens {top_k} for each text:")
77
+
78
+ decoded_query = model.decode(query_embed, top_k=top_k)
79
+ decoded_document = model.decode(document_embed)
80
+
81
+ for i in range(top_k):
82
+ query_token, query_score = decoded_query[i]
83
+ doc_score = next((score for token, score in decoded_document if token == query_token), 0)
84
+ if doc_score != 0:
85
+ print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
86
+
87
+ # Top tokens 3 for each text:
88
+ # Token: ny, Query score: 5.7729, Document score: 1.0552
89
+ # Token: weather, Query score: 4.5684, Document score: 1.1697
90
+ # Token: now, Query score: 3.5895, Document score: 0.3932
91
+ ```
92
+
93
  ## Usage (HuggingFace)
94
  This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
95