zhichao-geng commited on
Commit
5f252fe
·
verified ·
1 Parent(s): 7b16cad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +144 -3
README.md CHANGED
@@ -1,3 +1,144 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: apache-2.0
4
+ tags:
5
+ - learned sparse
6
+ - opensearch
7
+ - transformers
8
+ - retrieval
9
+ - passage-retrieval
10
+ - query-expansion
11
+ - document-expansion
12
+ - bag-of-words
13
+ ---
14
+
15
+ # opensearch-neural-sparse-encoding-v2-distill
16
+ This is a learned sparse retrieval model. It encodes the queries and documents to 30522 dimensional **sparse vectors**. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token.
17
+
18
+ This model is trained on MS MARCO dataset.
19
+
20
+ OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API.
21
+
22
+ ## Select the model
23
+ The model should be selected considering search relevance, model inference and retrieval efficiency(FLOPS). We benchmark models' **zero-shot performance** on a subset of BEIR benchmark: TrecCovid,NFCorpus,NQ,HotpotQA,FiQA,ArguAna,Touche,DBPedia,SCIDOCS,FEVER,Climate FEVER,SciFact,Quora.
24
+
25
+ Overall, the v2 series of models have better search relevance, efficiency and inference speed than the v1 series. The specific advantages and disadvantages may vary across different datasets.
26
+
27
+ | Model | Inference-free for Retrieval | Model Parameters | AVG NDCG@10 | AVG FLOPS |
28
+ |-------|------------------------------|------------------|-------------|-----------|
29
+ | [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | | 133M | 0.524 | 11.4 |
30
+ | [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | | 67M | 0.528 | 8.3 |
31
+ | [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | ✔️ | 133M | 0.490 | 2.3 |
32
+ | [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) | ✔️ | 67M | 0.504 | 1.8 |
33
+
34
+
35
+ ## Usage (HuggingFace)
36
+ This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API.
37
+
38
+ ```python
39
+ import itertools
40
+ import torch
41
+ from transformers import AutoModelForMaskedLM, AutoTokenizer
42
+
43
+
44
+ # get sparse vector from dense vectors with shape batch_size * seq_len * vocab_size
45
+ def get_sparse_vector(feature, output):
46
+ values, _ = torch.max(output*feature["attention_mask"].unsqueeze(-1), dim=1)
47
+ values = torch.log(1 + torch.relu(values))
48
+ values[:,special_token_ids] = 0
49
+ return values
50
+
51
+ # transform the sparse vector to a dict of (token, weight)
52
+ def transform_sparse_vector_to_dict(sparse_vector):
53
+ sample_indices,token_indices=torch.nonzero(sparse_vector,as_tuple=True)
54
+ non_zero_values = sparse_vector[(sample_indices,token_indices)].tolist()
55
+ number_of_tokens_for_each_sample = torch.bincount(sample_indices).cpu().tolist()
56
+ tokens = [transform_sparse_vector_to_dict.id_to_token[_id] for _id in token_indices.tolist()]
57
+
58
+ output = []
59
+ end_idxs = list(itertools.accumulate([0]+number_of_tokens_for_each_sample))
60
+ for i in range(len(end_idxs)-1):
61
+ token_strings = tokens[end_idxs[i]:end_idxs[i+1]]
62
+ weights = non_zero_values[end_idxs[i]:end_idxs[i+1]]
63
+ output.append(dict(zip(token_strings, weights)))
64
+ return output
65
+
66
+
67
+ # load the model
68
+ model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-v2-distill")
69
+ tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-v2-distill")
70
+
71
+ # set the special tokens and id_to_token transform for post-process
72
+ special_token_ids = [tokenizer.vocab[token] for token in tokenizer.special_tokens_map.values()]
73
+ get_sparse_vector.special_token_ids = special_token_ids
74
+ id_to_token = ["" for i in range(tokenizer.vocab_size)]
75
+ for token, _id in tokenizer.vocab.items():
76
+ id_to_token[_id] = token
77
+ transform_sparse_vector_to_dict.id_to_token = id_to_token
78
+
79
+
80
+
81
+ query = "What's the weather in ny now?"
82
+ document = "Currently New York is rainy."
83
+
84
+ # encode the query & document
85
+ feature = tokenizer([query, document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False)
86
+ output = model(**feature)[0]
87
+ sparse_vector = get_sparse_vector(feature, output)
88
+
89
+ # get similarity score
90
+ sim_score = torch.matmul(sparse_vector[0],sparse_vector[1])
91
+ print(sim_score) # tensor(22.3299, grad_fn=<DotBackward0>)
92
+
93
+
94
+ query_token_weight, document_query_token_weight = transform_sparse_vector_to_dict(sparse_vector)
95
+ for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True):
96
+ if token in document_query_token_weight:
97
+ print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token))
98
+
99
+
100
+
101
+ # result:
102
+ # score in query: 2.9262, score in document: 2.1335, token: ny
103
+ # score in query: 2.5206, score in document: 1.5277, token: weather
104
+ # score in query: 2.0373, score in document: 2.3489, token: york
105
+ # score in query: 1.5786, score in document: 0.8752, token: cool
106
+ # score in query: 1.4636, score in document: 1.5132, token: current
107
+ # score in query: 0.7761, score in document: 0.8860, token: season
108
+ # score in query: 0.7560, score in document: 0.6726, token: 2020
109
+ # score in query: 0.7222, score in document: 0.6292, token: summer
110
+ # score in query: 0.6888, score in document: 0.6419, token: nina
111
+ # score in query: 0.6451, score in document: 0.8200, token: storm
112
+ # score in query: 0.4698, score in document: 0.7635, token: brooklyn
113
+ # score in query: 0.4562, score in document: 0.1208, token: julian
114
+ # score in query: 0.3484, score in document: 0.3903, token: wow
115
+ # score in query: 0.3439, score in document: 0.4160, token: usa
116
+ # score in query: 0.2751, score in document: 0.8260, token: manhattan
117
+ # score in query: 0.2013, score in document: 0.7735, token: fog
118
+ # score in query: 0.1989, score in document: 0.2961, token: mood
119
+ # score in query: 0.1653, score in document: 0.3437, token: climate
120
+ # score in query: 0.1191, score in document: 0.1533, token: nature
121
+ # score in query: 0.0665, score in document: 0.0600, token: temperature
122
+ # score in query: 0.0552, score in document: 0.3396, token: windy
123
+ ```
124
+
125
+ The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match.
126
+
127
+ ## Detailed Search Relevance
128
+
129
+ | Dataset | [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) |
130
+ |---------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
131
+ | Trec Covid | 0.771 | 0.775 | 0.707 | 0.690 |
132
+ | NFCorpus | 0.360 | 0.347 | 0.352 | 0.343 |
133
+ | NQ | 0.553 | 0.561 | 0.521 | 0.528 |
134
+ | HotpotQA | 0.697 | 0.685 | 0.677 | 0.675 |
135
+ | FiQA | 0.376 | 0.374 | 0.344 | 0.357 |
136
+ | ArguAna | 0.508 | 0.551 | 0.461 | 0.496 |
137
+ | Touche | 0.278 | 0.278 | 0.294 | 0.287 |
138
+ | DBPedia | 0.447 | 0.435 | 0.412 | 0.418 |
139
+ | SCIDOCS | 0.164 | 0.173 | 0.154 | 0.166 |
140
+ | FEVER | 0.821 | 0.849 | 0.743 | 0.818 |
141
+ | Climate FEVER | 0.263 | 0.249 | 0.202 | 0.224 |
142
+ | SciFact | 0.723 | 0.722 | 0.716 | 0.715 |
143
+ | Quora | 0.856 | 0.863 | 0.788 | 0.841 |
144
+ | **Average** | **0.524** | **0.528** | **0.490** | **0.504** |