--- language: en license: apache-2.0 tags: - learned sparse - opensearch - transformers - retrieval - passage-retrieval - query-expansion - document-expansion - bag-of-words --- # opensearch-neural-sparse-encoding-v2-distill This is a learned sparse retrieval model. It encodes the queries and documents to 30522 dimensional **sparse vectors**. The non-zero dimension index means the corresponding token in the vocabulary, and the weight means the importance of the token. The training datasets includes MS MARCO, eli5_question_answer, squad_pairs, WikiAnswers, yahoo_answers_title_question, gooaq_pairs, stackexchange_duplicate_questions_body_body, wikihow, S2ORC_title_abstract, stackexchange_duplicate_questions_title-body_title-body, yahoo_answers_question_answer, searchQA_top5_snippets, stackexchange_duplicate_questions_title_title, yahoo_answers_title_answer. OpenSearch neural sparse feature supports learned sparse retrieval with lucene inverted index. Link: https://opensearch.org/docs/latest/query-dsl/specialized/neural-sparse/. The indexing and search can be performed with OpenSearch high-level API. ## Select the model The model should be selected considering search relevance, model inference and retrieval efficiency(FLOPS). We benchmark models' **zero-shot performance** on a subset of BEIR benchmark: TrecCovid,NFCorpus,NQ,HotpotQA,FiQA,ArguAna,Touche,DBPedia,SCIDOCS,FEVER,Climate FEVER,SciFact,Quora. Overall, the v2 series of models have better search relevance, efficiency and inference speed than the v1 series. The specific advantages and disadvantages may vary across different datasets. | Model | Inference-free for Retrieval | Model Parameters | AVG NDCG@10 | AVG FLOPS | |-------|------------------------------|------------------|-------------|-----------| | [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | | 133M | 0.524 | 11.4 | | [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | | 67M | 0.528 | 8.3 | | [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | ✔️ | 133M | 0.490 | 2.3 | | [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) | ✔️ | 67M | 0.504 | 1.8 | | [opensearch-neural-sparse-encoding-doc-v2-mini](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini) | ✔️ | 23M | 0.497 | 1.7 | ## Usage (HuggingFace) This model is supposed to run inside OpenSearch cluster. But you can also use it outside the cluster, with HuggingFace models API. ```python import itertools import torch from transformers import AutoModelForMaskedLM, AutoTokenizer # get sparse vector from dense vectors with shape batch_size * seq_len * vocab_size def get_sparse_vector(feature, output): values, _ = torch.max(output*feature["attention_mask"].unsqueeze(-1), dim=1) values = torch.log(1 + torch.relu(values)) values[:,special_token_ids] = 0 return values # transform the sparse vector to a dict of (token, weight) def transform_sparse_vector_to_dict(sparse_vector): sample_indices,token_indices=torch.nonzero(sparse_vector,as_tuple=True) non_zero_values = sparse_vector[(sample_indices,token_indices)].tolist() number_of_tokens_for_each_sample = torch.bincount(sample_indices).cpu().tolist() tokens = [transform_sparse_vector_to_dict.id_to_token[_id] for _id in token_indices.tolist()] output = [] end_idxs = list(itertools.accumulate([0]+number_of_tokens_for_each_sample)) for i in range(len(end_idxs)-1): token_strings = tokens[end_idxs[i]:end_idxs[i+1]] weights = non_zero_values[end_idxs[i]:end_idxs[i+1]] output.append(dict(zip(token_strings, weights))) return output # load the model model = AutoModelForMaskedLM.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-v2-distill") tokenizer = AutoTokenizer.from_pretrained("opensearch-project/opensearch-neural-sparse-encoding-v2-distill") # set the special tokens and id_to_token transform for post-process special_token_ids = [tokenizer.vocab[token] for token in tokenizer.special_tokens_map.values()] get_sparse_vector.special_token_ids = special_token_ids id_to_token = ["" for i in range(tokenizer.vocab_size)] for token, _id in tokenizer.vocab.items(): id_to_token[_id] = token transform_sparse_vector_to_dict.id_to_token = id_to_token query = "What's the weather in ny now?" document = "Currently New York is rainy." # encode the query & document feature = tokenizer([query, document], padding=True, truncation=True, return_tensors='pt', return_token_type_ids=False) output = model(**feature)[0] sparse_vector = get_sparse_vector(feature, output) # get similarity score sim_score = torch.matmul(sparse_vector[0],sparse_vector[1]) print(sim_score) # tensor(38.6112, grad_fn=) query_token_weight, document_query_token_weight = transform_sparse_vector_to_dict(sparse_vector) for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reverse=True): if token in document_query_token_weight: print("score in query: %.4f, score in document: %.4f, token: %s"%(query_token_weight[token],document_query_token_weight[token],token)) # result: # score in query: 2.7273, score in document: 2.9088, token: york # score in query: 2.5734, score in document: 0.9208, token: now # score in query: 2.3895, score in document: 1.7237, token: ny # score in query: 2.2184, score in document: 1.2368, token: weather # score in query: 1.8693, score in document: 1.4146, token: current # score in query: 1.5887, score in document: 0.7450, token: today # score in query: 1.4704, score in document: 0.9247, token: sunny # score in query: 1.4374, score in document: 1.9737, token: nyc # score in query: 1.4347, score in document: 1.6019, token: currently # score in query: 1.1605, score in document: 0.9794, token: climate # score in query: 1.0944, score in document: 0.7141, token: upstate # score in query: 1.0471, score in document: 0.5519, token: forecast # score in query: 0.9268, score in document: 0.6692, token: verve # score in query: 0.9126, score in document: 0.4486, token: huh # score in query: 0.8960, score in document: 0.7706, token: greene # score in query: 0.8779, score in document: 0.7120, token: picturesque # score in query: 0.8471, score in document: 0.4183, token: pleasantly # score in query: 0.8079, score in document: 0.2140, token: windy # score in query: 0.7537, score in document: 0.4925, token: favorable # score in query: 0.7519, score in document: 2.1456, token: rain # score in query: 0.7277, score in document: 0.3818, token: skies # score in query: 0.6995, score in document: 0.8593, token: lena # score in query: 0.6895, score in document: 0.2410, token: sunshine # score in query: 0.6621, score in document: 0.3016, token: johnny # score in query: 0.6604, score in document: 0.1933, token: skyline # score in query: 0.6117, score in document: 0.2197, token: sasha # score in query: 0.5962, score in document: 0.0414, token: vibe # score in query: 0.5381, score in document: 0.7560, token: hardly # score in query: 0.4582, score in document: 0.4243, token: prevailing # score in query: 0.4539, score in document: 0.5073, token: unpredictable # score in query: 0.4350, score in document: 0.8463, token: presently # score in query: 0.3674, score in document: 0.2496, token: hail # score in query: 0.3324, score in document: 0.5506, token: shivered # score in query: 0.3281, score in document: 0.1964, token: wind # score in query: 0.3052, score in document: 0.5785, token: rudy # score in query: 0.2797, score in document: 0.0357, token: looming # score in query: 0.2712, score in document: 0.0870, token: atmospheric # score in query: 0.2471, score in document: 0.3490, token: vicky # score in query: 0.2247, score in document: 0.2383, token: sandy # score in query: 0.2154, score in document: 0.5737, token: crowded # score in query: 0.1723, score in document: 0.1857, token: chilly # score in query: 0.1700, score in document: 0.4110, token: blizzard # score in query: 0.1183, score in document: 0.0613, token: ##cken # score in query: 0.0923, score in document: 0.6363, token: unrest # score in query: 0.0624, score in document: 0.2127, token: russ # score in query: 0.0558, score in document: 0.5542, token: blackout # score in query: 0.0549, score in document: 0.1589, token: kahn # score in query: 0.0160, score in document: 0.0566, token: 2020 # score in query: 0.0125, score in document: 0.3753, token: nighttime ``` The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match. ## Detailed Search Relevance
| Model | Average | Trec Covid | NFCorpus | NQ | HotpotQA | FiQA | ArguAna | Touche | DBPedia | SCIDOCS | FEVER | Climate FEVER | SciFact | Quora | |-------|---------|------------|----------|----|----------|------|---------|--------|---------|---------|-------|---------------|---------|-------| | [opensearch-neural-sparse-encoding-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v1) | 0.524 | 0.771 | 0.360 | 0.553 | 0.697 | 0.376 | 0.508 | 0.278 | 0.447 | 0.164 | 0.821 | 0.263 | 0.723 | 0.856 | | [opensearch-neural-sparse-encoding-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-v2-distill) | 0.528 | 0.775 | 0.347 | 0.561 | 0.685 | 0.374 | 0.551 | 0.278 | 0.435 | 0.173 | 0.849 | 0.249 | 0.722 | 0.863 | | [opensearch-neural-sparse-encoding-doc-v1](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v1) | 0.490 | 0.707 | 0.352 | 0.521 | 0.677 | 0.344 | 0.461 | 0.294 | 0.412 | 0.154 | 0.743 | 0.202 | 0.716 | 0.788 | | [opensearch-neural-sparse-encoding-doc-v2-distill](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill) | 0.504 | 0.690 | 0.343 | 0.528 | 0.675 | 0.357 | 0.496 | 0.287 | 0.418 | 0.166 | 0.818 | 0.224 | 0.715 | 0.841 | | [opensearch-neural-sparse-encoding-doc-v2-mini](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v2-mini) | 0.497 | 0.709 | 0.336 | 0.510 | 0.666 | 0.338 | 0.480 | 0.285 | 0.407 | 0.164 | 0.812 | 0.216 | 0.699 | 0.837 |