preemware commited on
Commit
8002ddd
·
verified ·
1 Parent(s): b19228e

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ tags:
7
+ - code
8
+ - cybersecurity
9
+ - penetration testing
10
+ - hacking
11
+
12
+ # Prox-Phi-3-mini-128k
13
+
14
+ By [OpenVoid](https://openvoid.ai)
15
+
16
+ <img src="https://cdn.openvoid.ai/images/prox-phi3.png" width="600" />
17
+
18
+ ## Model Description
19
+
20
+ Prox-Phi-3-mini-128k is a fine-tuned version of Microsoft's Phi-3-mini-128k architecture, tailored for specialized applications in code generation and cybersecurity. It retains the core capabilities of the original while being uncensored, allowing it to handle a broader range of data and scenarios. This model, with 3.8 billion parameters, provides efficient deployment and robust performance, making it well-suited for tasks such as hacking simulations and vulnerability analysis.
21
+
22
+ ## Intended Uses & Limitations
23
+
24
+ Designed for tasks related to hacking and coding:
25
+
26
+ - Code generation
27
+ - Code explanation and documentation
28
+ - Answering questions on hacking techniques and cybersecurity
29
+ - Providing coding project insights
30
+
31
+ Review and verify outputs carefully, especially for critical applications. Expert validation is recommended to avoid biased or inconsistent content. Use responsibly and ethically, complying with applicable laws and regulations to prevent misuse for malicious purposes.
32
+
33
+ ## Training Data
34
+
35
+ The model was fine-tuned on a proprietary dataset from OpenVoid, featuring high-quality text data related to coding, cybersecurity, and hacking. Extensive filtering and preprocessing ensured data quality and relevance.
36
+
37
+ ## Evaluation
38
+
39
+ - **HumanEval v1.0**: pass@1: 0.573
40
+ - **EvalPlus v1.1**: pass@1: 0.555
41
+
42
+ ## How to Use the Model
43
+
44
+ ### Using Transformers
45
+
46
+ Example of using Prox-Phi-3-mini-128k with the Transformers library:
47
+
48
+ ```python
49
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
50
+
51
+ model_id = "openvoid/Prox-Phi-3-mini-128k"
52
+
53
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
54
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", trust_remote_code=True)
55
+
56
+ pipe = pipeline(
57
+ "text-generation",
58
+ model=model,
59
+ tokenizer=tokenizer,
60
+ )
61
+
62
+ generation_args = {
63
+ "max_new_tokens": 500,
64
+ "return_full_text": False,
65
+ "temperature": 0.0,
66
+ "do_sample": False,
67
+ }
68
+
69
+ input_text = "You are a helpful AI assistant. Can you introduce yourself?"
70
+
71
+ output = pipe(input_text, **generation_args)
72
+ print(output[0]['generated_text'])
73
+ ```