File size: 12,723 Bytes
8a50dab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: cppe_finetuned_microsoft_detr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cppe_finetuned_microsoft_detr

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0626
- Map: 0.3024
- Map 50: 0.5805
- Map 75: 0.267
- Map Small: 0.1176
- Map Medium: 0.2792
- Map Large: 0.4209
- Mar 1: 0.3265
- Mar 10: 0.4753
- Mar 100: 0.493
- Mar Small: 0.2999
- Mar Medium: 0.4328
- Mar Large: 0.5974
- Map Coverall: 0.6047
- Mar 100 Coverall: 0.7317
- Map Face Shield: 0.1945
- Mar 100 Face Shield: 0.4371
- Map Gloves: 0.2079
- Mar 100 Gloves: 0.3809
- Map Goggles: 0.1927
- Mar 100 Goggles: 0.4708
- Map Mask: 0.3121
- Mar 100 Mask: 0.4444

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log        | 1.0   | 107  | 1.2931          | 0.1555 | 0.3243 | 0.1314 | 0.0558    | 0.1632     | 0.1669    | 0.1937 | 0.3673 | 0.4018  | 0.195     | 0.365      | 0.4633    | 0.4548       | 0.6756           | 0.0363          | 0.2903              | 0.0701     | 0.3393         | 0.0442      | 0.3063          | 0.172    | 0.3974       |
| No log        | 2.0   | 214  | 1.2610          | 0.1908 | 0.3986 | 0.1517 | 0.0879    | 0.1743     | 0.2192    | 0.2276 | 0.4023 | 0.4378  | 0.2142    | 0.3801     | 0.5356    | 0.5089       | 0.6861           | 0.0549          | 0.3403              | 0.0915     | 0.3764         | 0.0949      | 0.35            | 0.204    | 0.436        |
| No log        | 3.0   | 321  | 1.2437          | 0.1857 | 0.385  | 0.1501 | 0.0685    | 0.1703     | 0.2282    | 0.2215 | 0.3818 | 0.4142  | 0.2441    | 0.3476     | 0.4908    | 0.5133       | 0.6906           | 0.0584          | 0.3145              | 0.0869     | 0.3348         | 0.0627      | 0.3104          | 0.2073   | 0.4206       |
| No log        | 4.0   | 428  | 1.2333          | 0.1856 | 0.3823 | 0.1584 | 0.0645    | 0.1891     | 0.2458    | 0.2334 | 0.4016 | 0.435   | 0.2289    | 0.3904     | 0.5318    | 0.48         | 0.6717           | 0.0516          | 0.3597              | 0.0926     | 0.3449         | 0.0925      | 0.4021          | 0.2111   | 0.3968       |
| 1.2628        | 5.0   | 535  | 1.1888          | 0.2164 | 0.4411 | 0.1896 | 0.0945    | 0.2176     | 0.2803    | 0.2553 | 0.4269 | 0.458   | 0.2953    | 0.4162     | 0.5399    | 0.5172       | 0.6944           | 0.0615          | 0.4032              | 0.1291     | 0.3904         | 0.1075      | 0.3667          | 0.2666   | 0.4354       |
| 1.2628        | 6.0   | 642  | 1.2081          | 0.2176 | 0.4395 | 0.1929 | 0.1024    | 0.2072     | 0.2821    | 0.2459 | 0.4112 | 0.4422  | 0.2462    | 0.3919     | 0.5244    | 0.5461       | 0.6694           | 0.0926          | 0.3855              | 0.1002     | 0.3253         | 0.1061      | 0.4125          | 0.2431   | 0.4185       |
| 1.2628        | 7.0   | 749  | 1.1817          | 0.2211 | 0.4487 | 0.1808 | 0.1157    | 0.22       | 0.2853    | 0.2672 | 0.4291 | 0.4571  | 0.2933    | 0.4044     | 0.5384    | 0.5562       | 0.6983           | 0.114           | 0.3887              | 0.1202     | 0.3635         | 0.0768      | 0.3875          | 0.2384   | 0.4476       |
| 1.2628        | 8.0   | 856  | 1.1479          | 0.2366 | 0.4707 | 0.2    | 0.095     | 0.2234     | 0.3338    | 0.2812 | 0.4407 | 0.4614  | 0.2716    | 0.4098     | 0.5436    | 0.5626       | 0.7022           | 0.0875          | 0.4048              | 0.1459     | 0.3657         | 0.1235      | 0.4104          | 0.2632   | 0.4238       |
| 1.2628        | 9.0   | 963  | 1.1549          | 0.2368 | 0.489  | 0.1934 | 0.1169    | 0.2275     | 0.3217    | 0.2798 | 0.4324 | 0.4575  | 0.2512    | 0.4139     | 0.5355    | 0.5537       | 0.6856           | 0.1044          | 0.4                 | 0.1528     | 0.3506         | 0.1268      | 0.4187          | 0.2465   | 0.4328       |
| 1.1288        | 10.0  | 1070 | 1.1305          | 0.2359 | 0.4874 | 0.1974 | 0.0855    | 0.2248     | 0.3196    | 0.2768 | 0.4554 | 0.4793  | 0.2871    | 0.4268     | 0.5719    | 0.563        | 0.7083           | 0.0903          | 0.4306              | 0.1509     | 0.368          | 0.0978      | 0.4542          | 0.2777   | 0.4354       |
| 1.1288        | 11.0  | 1177 | 1.1459          | 0.2407 | 0.4803 | 0.2174 | 0.115     | 0.2211     | 0.3336    | 0.2786 | 0.4438 | 0.471   | 0.2459    | 0.417      | 0.5717    | 0.5698       | 0.7156           | 0.1062          | 0.4258              | 0.1374     | 0.3461         | 0.139       | 0.4417          | 0.2511   | 0.4259       |
| 1.1288        | 12.0  | 1284 | 1.1289          | 0.2497 | 0.5027 | 0.2098 | 0.1368    | 0.2233     | 0.3492    | 0.2913 | 0.4496 | 0.4676  | 0.2719    | 0.3944     | 0.5732    | 0.5902       | 0.7117           | 0.1187          | 0.4145              | 0.1528     | 0.3478         | 0.1139      | 0.425           | 0.2729   | 0.4392       |
| 1.1288        | 13.0  | 1391 | 1.1266          | 0.2564 | 0.5143 | 0.2167 | 0.1368    | 0.2323     | 0.3596    | 0.296  | 0.4573 | 0.4824  | 0.2703    | 0.4183     | 0.6026    | 0.5731       | 0.7056           | 0.1374          | 0.4435              | 0.1614     | 0.3517         | 0.1354      | 0.4854          | 0.2745   | 0.4259       |
| 1.1288        | 14.0  | 1498 | 1.1110          | 0.2641 | 0.5054 | 0.2241 | 0.1242    | 0.2381     | 0.3797    | 0.3017 | 0.4593 | 0.4811  | 0.2946    | 0.422      | 0.5822    | 0.5887       | 0.7206           | 0.1489          | 0.4323              | 0.1551     | 0.35           | 0.1371      | 0.4563          | 0.2906   | 0.4466       |
| 1.0237        | 15.0  | 1605 | 1.0852          | 0.2788 | 0.5402 | 0.2488 | 0.1479    | 0.2432     | 0.3835    | 0.2996 | 0.4663 | 0.492   | 0.3137    | 0.4293     | 0.5889    | 0.5757       | 0.7133           | 0.1546          | 0.4419              | 0.1981     | 0.3972         | 0.1701      | 0.4688          | 0.2953   | 0.4386       |
| 1.0237        | 16.0  | 1712 | 1.0886          | 0.2768 | 0.5406 | 0.2381 | 0.1037    | 0.2503     | 0.3823    | 0.3031 | 0.4631 | 0.4878  | 0.292     | 0.431      | 0.5886    | 0.5799       | 0.715            | 0.1653          | 0.4435              | 0.2027     | 0.3916         | 0.1374      | 0.4458          | 0.2987   | 0.4429       |
| 1.0237        | 17.0  | 1819 | 1.0825          | 0.2755 | 0.5308 | 0.2419 | 0.1058    | 0.2549     | 0.3796    | 0.3094 | 0.4629 | 0.4839  | 0.261     | 0.433      | 0.5792    | 0.5822       | 0.7083           | 0.1686          | 0.421               | 0.1964     | 0.3837         | 0.1297      | 0.4583          | 0.3005   | 0.4481       |
| 1.0237        | 18.0  | 1926 | 1.0832          | 0.2878 | 0.5609 | 0.2468 | 0.1383    | 0.2599     | 0.4       | 0.3072 | 0.4664 | 0.4858  | 0.279     | 0.4257     | 0.6015    | 0.591        | 0.7139           | 0.1712          | 0.4177              | 0.2039     | 0.3848         | 0.1659      | 0.4771          | 0.307    | 0.4354       |
| 0.9398        | 19.0  | 2033 | 1.0871          | 0.283  | 0.5585 | 0.2483 | 0.1222    | 0.2519     | 0.4097    | 0.3143 | 0.4597 | 0.4822  | 0.2877    | 0.4131     | 0.5994    | 0.5798       | 0.7117           | 0.1882          | 0.4226              | 0.2148     | 0.386          | 0.1401      | 0.4479          | 0.2921   | 0.4429       |
| 0.9398        | 20.0  | 2140 | 1.0830          | 0.2926 | 0.5668 | 0.2684 | 0.1397    | 0.2659     | 0.4047    | 0.311  | 0.466  | 0.4844  | 0.2939    | 0.4176     | 0.5936    | 0.5834       | 0.7172           | 0.1957          | 0.4306              | 0.2104     | 0.3798         | 0.1691      | 0.45            | 0.3042   | 0.4444       |
| 0.9398        | 21.0  | 2247 | 1.0669          | 0.2973 | 0.5757 | 0.2692 | 0.134     | 0.2775     | 0.4069    | 0.3216 | 0.4725 | 0.494   | 0.2879    | 0.4342     | 0.5977    | 0.5851       | 0.7106           | 0.1966          | 0.4355              | 0.2185     | 0.3865         | 0.1791      | 0.4833          | 0.3072   | 0.454        |
| 0.9398        | 22.0  | 2354 | 1.0805          | 0.2894 | 0.5703 | 0.2566 | 0.1277    | 0.2651     | 0.421     | 0.3232 | 0.4695 | 0.4863  | 0.3147    | 0.4199     | 0.5961    | 0.5887       | 0.7194           | 0.1879          | 0.4403              | 0.2018     | 0.3646         | 0.1696      | 0.4667          | 0.2989   | 0.4402       |
| 0.9398        | 23.0  | 2461 | 1.0686          | 0.3071 | 0.5837 | 0.2746 | 0.1368    | 0.2735     | 0.4291    | 0.3296 | 0.4745 | 0.4905  | 0.303     | 0.4352     | 0.5913    | 0.6071       | 0.7344           | 0.1998          | 0.4468              | 0.2135     | 0.3736         | 0.2062      | 0.4563          | 0.3088   | 0.4413       |
| 0.8602        | 24.0  | 2568 | 1.0703          | 0.2993 | 0.5735 | 0.2705 | 0.1225    | 0.2744     | 0.4134    | 0.3201 | 0.4754 | 0.4916  | 0.3       | 0.4343     | 0.5966    | 0.6049       | 0.7378           | 0.1961          | 0.4387              | 0.2067     | 0.3787         | 0.1804      | 0.4667          | 0.3084   | 0.436        |
| 0.8602        | 25.0  | 2675 | 1.0672          | 0.3009 | 0.5742 | 0.2655 | 0.1273    | 0.2775     | 0.419     | 0.3263 | 0.4804 | 0.4989  | 0.3047    | 0.4422     | 0.5972    | 0.6047       | 0.7333           | 0.1898          | 0.4435              | 0.2015     | 0.3826         | 0.1979      | 0.4854          | 0.3104   | 0.4497       |
| 0.8602        | 26.0  | 2782 | 1.0661          | 0.3021 | 0.5755 | 0.268  | 0.1187    | 0.2731     | 0.4256    | 0.3241 | 0.4786 | 0.4935  | 0.3007    | 0.4297     | 0.6028    | 0.6021       | 0.725            | 0.1903          | 0.4387              | 0.2072     | 0.377          | 0.1982      | 0.475           | 0.3126   | 0.4519       |
| 0.8602        | 27.0  | 2889 | 1.0628          | 0.3009 | 0.5737 | 0.2665 | 0.1136    | 0.2778     | 0.42      | 0.3231 | 0.4755 | 0.493   | 0.2926    | 0.4344     | 0.5994    | 0.603        | 0.7289           | 0.1875          | 0.4403              | 0.2061     | 0.3826         | 0.1989      | 0.4708          | 0.3091   | 0.4423       |
| 0.8602        | 28.0  | 2996 | 1.0646          | 0.3031 | 0.579  | 0.2694 | 0.1169    | 0.2819     | 0.4205    | 0.3269 | 0.4762 | 0.4935  | 0.2948    | 0.4355     | 0.5975    | 0.6047       | 0.7317           | 0.1945          | 0.4435              | 0.21       | 0.3798         | 0.1918      | 0.4667          | 0.3144   | 0.446        |
| 0.8206        | 29.0  | 3103 | 1.0626          | 0.3031 | 0.5804 | 0.2679 | 0.1177    | 0.2792     | 0.4217    | 0.3266 | 0.4754 | 0.4929  | 0.2936    | 0.433      | 0.5982    | 0.605        | 0.7311           | 0.1945          | 0.4355              | 0.2076     | 0.382          | 0.1956      | 0.4708          | 0.3126   | 0.445        |
| 0.8206        | 30.0  | 3210 | 1.0626          | 0.3024 | 0.5805 | 0.267  | 0.1176    | 0.2792     | 0.4209    | 0.3265 | 0.4753 | 0.493   | 0.2999    | 0.4328     | 0.5974    | 0.6047       | 0.7317           | 0.1945          | 0.4371              | 0.2079     | 0.3809         | 0.1927      | 0.4708          | 0.3121   | 0.4444       |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1