File size: 3,616 Bytes
9b9ebe1 85b647c fed3d1c 9b9ebe1 fed3d1c 9b9ebe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- banking77
metrics:
- accuracy
- f1
widget:
- text: Could you assist me in finding my lost card?
example_title: Example 1
- text: I found my lost card. Am I still able to use it?
example_title: Example 2
- text: "Hey, I thought my topup was all done but now the money is gone again \u2013\
\ what\u2019s up with that?"
example_title: Example 3
- text: "Tell me why my topup wouldn\u2019t go through?"
example_title: Example 4
model-index:
- name: distilbert-base-uncased-finetuned-banking77
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: banking77
type: banking77
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.925
- name: F1
type: f1
value: 0.925018570680639
- task:
type: text-classification
name: Text Classification
dataset:
name: banking77
type: banking77
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.925
verified: true
- name: Precision Macro
type: precision
value: 0.9282769473964405
verified: true
- name: Precision Micro
type: precision
value: 0.925
verified: true
- name: Precision Weighted
type: precision
value: 0.9282769473964405
verified: true
- name: Recall Macro
type: recall
value: 0.9250000000000002
verified: true
- name: Recall Micro
type: recall
value: 0.925
verified: true
- name: Recall Weighted
type: recall
value: 0.925
verified: true
- name: F1 Macro
type: f1
value: 0.9250185706806391
verified: true
- name: F1 Micro
type: f1
value: 0.925
verified: true
- name: F1 Weighted
type: f1
value: 0.925018570680639
verified: true
- name: loss
type: loss
value: 0.2934279143810272
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-banking77
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the banking77 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2935
- Accuracy: 0.925
- F1: 0.9250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.686210354742596e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 126 | 1.1457 | 0.7896 | 0.7685 |
| No log | 2.0 | 252 | 0.4673 | 0.8906 | 0.8889 |
| No log | 3.0 | 378 | 0.3488 | 0.9150 | 0.9151 |
| 0.9787 | 4.0 | 504 | 0.3238 | 0.9180 | 0.9179 |
| 0.9787 | 5.0 | 630 | 0.3126 | 0.9225 | 0.9226 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0
- Datasets 2.0.0
- Tokenizers 0.11.6
|