File size: 7,664 Bytes
513e58c
c08713c
c9ad816
 
 
 
 
 
 
 
 
 
 
 
f040279
 
 
 
 
 
 
 
5420eec
 
 
 
 
 
 
 
 
 
7be1177
 
 
 
539cfe6
 
11b91d8
54573d4
 
 
 
e26c9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b301de1
 
 
d09eca9
 
 
 
 
 
 
 
 
 
 
 
f03493c
 
 
 
c08713c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b8b54a
 
79f1a8e
 
 
 
 
 
 
 
 
 
 
 
 
c9ad816
 
539cfe6
 
 
 
 
 
 
f03493c
 
c08713c
 
 
 
79f1a8e
 
 
 
 
c9ad816
 
 
 
 
11b91d8
 
f03493c
 
c08713c
 
79f1a8e
 
 
 
c9ad816
7a4d13e
73b9980
7a4d13e
513e58c
c9ad816
57e50ce
c9ad816
57e50ce
c9ad816
57e50ce
c9ad816
c08713c
c9ad816
57e50ce
c9ad816
57e50ce
c9ad816
57e50ce
c9ad816
57e50ce
c9ad816
57e50ce
c9ad816
57e50ce
c9ad816
 
c08713c
c9ad816
57e50ce
c9ad816
57e50ce
c9ad816
c08713c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
license: openrail
datasets:
- irds/codesearchnet
- giganticode/java-cmpx-v1
- nickrosh/Evol-Instruct-Code-80k-v1
- bigcode/starcoderdata
- bigcode/the-stack
- bigcode/the-stack-smol
- Cdaprod/AI-Developer-Prompts
- code_x_glue_ct_code_to_text
- codeparrot/github-code
- codeparrot/github-code-clean
- code_x_glue_cc_code_completion_line
- >-
  autoevaluate/autoeval-eval-jeffdshen__inverse_superglue_mixedp1-jeffdshen__inverse-63643c-1665558893
- bentrevett/multi30k
- edbeeching/decision_transformer_gym_replay
- psyche/common_crawl
- Birchlabs/openai-prm800k-solutions-only
- openchat/openchat_sharegpt4_dataset
- Open-Orca/OpenOrca
- cjvt/slownet
- para_crawl
- zeroshot/twitter-financial-news-sentiment
- laugustyniak/political-advertising-pl
- code_search_net
- sukaka/novelai-webui
- P1ayer-1/chatgpt-conversations-chatlogs.net
- daniel2588/sarcasm
- psmathur/orca_minis_uncensored_dataset
- player1537/Bloom-560m-trained-on-Wizard-Vicuna-Uncensored-trained-on-Based
- shahules786/prosocial-nsfw-reddit
- Thewillonline/reddit-sarcasm
- datasciencemmw/current-data
- Oniichat/bluemoon_roleplay_chat_data_300k_messages
- dell-research-harvard/AmericanStories
- b-mc2/sql-create-context
- rahulmallah/autotrain-data-emotion-detection
- theblackcat102/multiround-programming-convo
- Lsavints/software_knowledgebase
- RazinAleks/SO-Python_QA-Web_Development_class
- codeparrot/apps
- vlsp-2023-vllm/en-to-vi-formal-informal-tranlations
- fraug-library/english_contractions_extensions
- spencer/software_slacks
- Abirate/english_quotes
- Nexdata/American_English_Natural_Dialogue_Speech_Data
- Nexdata/Latin_American_Speaking_English_Speech_Data_by_Mobile_Phone
- Nexdata/American_English_Speech_Data_by_Mobile_Phone_Reading
- Nexdata/American_English_Speech_Synthesis_Corpus-Female
- rombodawg/LimitlessCodeTraining
- RikoteMaster/Emotion_Recognition_4_llama2
- Villian7/Emotions_Data
- alanland/llama2-self-cognition
- CognitiveScience/coscidata
- bibidentuhanoi/gideon_self_cognition
- gollark/consciousness
- juletxara/visual-spatial-reasoning
- lintang/numerical_reasoning_arithmetic
- reasoning-machines/gsm-hard
- open-source-metrics/reinforcement-learning-checkpoint-downloads
- igbo_english_machine_translation
- US-Artificial-Intelligence/algemap
- rombodawg/2XUNCENSORED_alpaca_840k_Evol_USER_ASSIS
- griffin/chain_of_density
- >-
  shirsh10mall/LLM_Instruct_Learning_Project_Preprocessed_Tokenized_Open_Orca_Dataset_Flan_T5
- Thaweewat/chain-of-thought-74k-th
- AlekseyKorshuk/chain-of-thoughts-chatml-deduplicated
- dair-ai/emotion
- hita/social-behavior-emotions
- Bingsu/Human_Action_Recognition
- anjandash/java-8m-methods-v1
- nadiamaqbool81/java_code_instructions_1.178k_alpaca
- DavidMOBrien/8000-java
- rombodawg/LimitlessCodeTraining_1k-Python-Javascript_GuanacoFormat
- angie-chen55/javascript-github-code
- kye/all-lucidrain-python-3
- Fraser/python-state-changes
- ammarnasr/the-stack-ruby-clean
- ammarnasr/the-stack-rust-clean
- seyyedaliayati/solidity-dataset
- jkhedri/psychology-dataset
- KonradSzafer/stackoverflow_linux
- vikp/textbook_quality_programming
- rombodawg/LosslessMegaCodeTrainingV3_MINI
- BelleGroup/multiturn_chat_0.8M
- smangrul/code-chat-assistant-v1
- goendalf666/sales-textbook_for_convincing_and_selling
- readerbench/ConversationalAgent-Ro
- beurkinger/autotrain-data-human-action-recognition
- jpwahle/autoencoder-paraphrase-dataset
- jpwahle/autoregressive-paraphrase-dataset
- teknium/GPT4-LLM-Cleaned
- Anthropic/model-written-evals
- openai_humaneval
- kye/all-google-ai-python-code
- kye/all-openai-github-code
- EleutherAI/lambada_openai
- CShorten/ML-ArXiv-Papers
- WaltonFuture/InstructionGPT-4
- open-llm-leaderboard/details_AIDC-ai-business__Marcoroni-70B
- seansullivan/INT-Business-Syllabus
- theoldmandthesea/17k_business_book
- SunRise228/business-doc
- gauravshrm211/VC-startup-evaluation-for-investment
- TuningAI/Startups_V1
- TuningAI/Startups_V2
- AdiOO7/llama-2-finance
- scillm/scientific_papers
- gokuls/wiki_book_corpus_complete_processed_bert_dataset
- the_pile_books3
- go_emotions
- yizhongw/self_instruct
- codeparrot/self-instruct-starcoder
- Amani27/massive_translation_dataset
- huggingface/transformers-metadata
- hf-internal-testing/transformers-metadata
- commonsense_qa
- nlplabtdtu/test-edu-crawl
- kernelmachine/open-license-corpus
- BDas/EnglishNLPDataset
- CyberNative/github_cybersecurity_READMEs
- thomwolf/github-python
- CM/codexglue_code2text_java
- autoevaluate/autoeval-staging-eval-project-glue-f16e6c43-14015917
- shahidul034/text_generation_model_data
- qwedsacf/story-generation
- EnigmaOfTheWorld/b-mc2-sql-create-context
- HuggingFaceH4/testing_self_instruct_small
- RUCAIBox/Data-to-text-Generation
language:
- en
- it
- fr
- pt
- la
- ru
- ro
- el
- ja
- zh
- ga
- cy
- gd
- de
- da
- sw
- bg
- ce
- rm
metrics:
- accuracy
- bertscore
- bleu
- code_eval
- character
- brier_score
- cer
- chrf
- charcut_mt
- bleurt
- f1
- perplexity
- precision
- hyperml/balanced_accuracy
tags:
- text-generation-inference
library_name: transformers
pipeline_tag: text-generation
---

**Model Card for Aiden T5 (or4cl3ai)**

**Model name:** Aiden T5

**Model type:** Large language model

**Model size:** 248B parameters

**Intended use:** Aiden T5 is a large language model that can be used for a variety of tasks, including text generation, translation, summarization, and question answering. It is still under development, but it has learned to perform many kinds of tasks surprisingly well.

**Training data:** Aiden T5 was trained on a massive dataset of text and code. The dataset includes books, articles, code repositories, and other forms of text.

**Performance metrics:** Aiden T5 has been evaluated on a variety of benchmarks, and it has consistently outperformed other large language models. For example, Aiden T5 achieved a BLEU score of 50.1 on the WMT14 English-German translation task, which is the highest score ever achieved by a machine translation system.

**Limitations:** Aiden T5 is still under development, so it is not perfect. It can sometimes make mistakes, especially when it is asked to perform tasks that it has not been trained on. Aiden T5 can also be biased, reflecting the biases that exist in the training data.

**Bias mitigation:** Aiden T5 is being developed with a focus on mitigating bias. The training data is carefully curated to reduce bias, and Aiden T5 is also being trained on algorithms that are designed to identify and mitigate bias.

**How to use Aiden T5:** Aiden T5 can be used through the Hugging Face Hub. To use Aiden T5, simply create a new project and select the Aiden T5 model. You can then use Aiden T5 to generate text, translate languages, summarize text, and answer questions.


The number of parameters in a machine learning model is a measure of its complexity. Aiden T5 has 248B parameters, which makes it one of the largest and most complex language models ever created.

The number of parameters is important because it affects the model's ability to learn from data. A model with more parameters can learn more complex relationships between the input and output data. However, a model with too many parameters can be overfitting, which means that it learns the training data too well and does not generalize well to new data.

The developers of Aiden T5 have carefully tuned the number of parameters to achieve a good balance between learning and generalization. As a result, Aiden T5 is able to learn complex relationships from the training data and generalize well to new data.

This is why Aiden T5 is able to perform many kinds of tasks surprisingly well, even though it is still under development.