GorkaUrbizu commited on
Commit
e18d336
1 Parent(s): 459d60d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md CHANGED
@@ -1,3 +1,55 @@
1
  ---
2
  license: cc-by-4.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
+ language:
4
+ - sw
5
  ---
6
+
7
+ ---
8
+ license: cc-by-4.0
9
+ language:
10
+ - sw
11
+ ---
12
+
13
+
14
+ BERT medium (cased) model trained on a subset of 125M tokens of cc100-Swahili for our work [Scaling Laws for BERT in Low-Resource Settings](https://youtu.be/dQw4w9WgXcQ) at ACL2023 Findings.
15
+
16
+ The model has 51M parameters (8L), with a vocab size of 50K.
17
+ It was trained for 500K steps with a sequence length of 512 tokens.
18
+
19
+
20
+ Authors
21
+ -----------
22
+ Gorka Urbizu [1], Iñaki San Vicente [1], Xabier Saralegi [1],
23
+ Rodrigo Agerri [2] and Aitor Soroa [2]
24
+
25
+ Affiliation of the authors:
26
+
27
+ [1] Orai NLP Technologies
28
+
29
+ [2] HiTZ Center - Ixa, University of the Basque Country UPV/EHU
30
+
31
+
32
+
33
+ Licensing
34
+ -------------
35
+
36
+ Copyright (C) by Orai NLP Technologies.
37
+
38
+ The model is licensed under the Creative Commons Attribution 4.0. International License (CC BY 4.0).
39
+
40
+ To view a copy of this license, visit [http://creativecommons.org/licenses/by/4.0/](https://creativecommons.org/licenses/by/4.0/deed.eu).
41
+
42
+
43
+
44
+
45
+ Acknowledgements
46
+ -------------------
47
+ If you use this model please cite the following paper:
48
+
49
+ - G. Urbizu, I. San Vicente, X. Saralegi, R. Agerri, A. Soroa. Scaling Laws for BERT in Low-Resource Settings. Findings of the Association for Computational Linguistics: ACL 2023. July, 2023. Toronto, Canada
50
+
51
+
52
+
53
+ Contact information
54
+ -----------------------
55
+ Gorka Urbizu, Iñaki San Vicente: {g.urbizu,i.sanvicente}@orai.eus