File size: 9,951 Bytes
f1e6b80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import json
import gzip
import numpy as np
import itertools

from typing import *
from tqdm.auto import tqdm
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from .data import stream_jsonl
from .execution import check_correctness
IMPORT_HELPER = {
    "python": [
        "import math",
        "import re",
        "import sys",
        "import copy",
        "import datetime",
        "import itertools",
        "import collections",
        "import heapq",
        "import functools",
        "import hashlib",
        "import numpy",
        "import numpy as np",
        "import string",
        "from typing import *",
        "from collections import *",
    ],
    "go"    : [
        "math",
        "strings",
        "fmt",
        "strconv",
        "time",
        "bytes",
        "regexp",
        "sort",
        "math/rand",
        "crypto/md5",
    ],
    "cpp"   : [
        "#include<stdlib.h>",
        "#include<algorithm>",
        "#include<math.h>",
        "#include<stdio.h>",
        "#include<vector>",
        "#include<string>",
        "#include<climits>",
        "#include<cstring>",
        "#include<iostream>",
        "#include<cassert>"
    ],
    "cs": ["using System.Numerics;", "using System.Diagnostics;", "using System.Collections.Generic;", "using System.Linq;", "using System.Text;", "using System.Security.Cryptography;", "using System.Collections.Generic;"]
}


LANGUAGE_NAME = {
    "cpp"   : "CPP",
    "go"    : "Go",
    "java"  : "Java",
    "js"    : "JavaScript",
    "python": "Python",
}


def read_dataset(
    data_file: str = None,
    dataset_type: str = "humaneval",
    num_shot=None,
) -> Dict:
    """
    Reads a dataset and returns a dictionary of tasks.
    """
    if num_shot is not None:
        print(f"{num_shot}-shot setting...")
    if "humaneval" in dataset_type.lower():
        if data_file is None:
            current_path = os.path.dirname(os.path.abspath(__file__))
            data_file = os.path.join(current_path, "..", "humaneval-x", "python", "data", "humaneval_python.jsonl.gz")
        dataset = {task["task_id"]: task for task in stream_jsonl(data_file)}
    else:
        raise f"Dataset: {dataset_type} not supported."

    return dataset

def estimate_pass_at_k(
        num_samples: Union[int, List[int], np.ndarray],
        num_correct: Union[List[int], np.ndarray],
        k: int
) -> np.ndarray:
    """
    Estimates pass@k of each problem and returns them in an array.
    """

    def estimator(n: int, c: int, k: int) -> float:
        """
        Calculates 1 - comb(n - c, k) / comb(n, k).
        """
        if n - c < k:
            return 1.0
        return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))

    if isinstance(num_samples, int):
        num_samples_it = itertools.repeat(num_samples, len(num_correct))
    else:
        assert len(num_samples) == len(num_correct)
        num_samples_it = iter(num_samples)

    return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])

def process_humaneval_test(sample, problems, example_test=False, is_mbpp=False, language="python"):
    """
    Processes a sample for evaluation.
    """
    task_id = sample["task_id"]
    if is_mbpp:
        return sample["generation"] + "\n" + "\n".join(problems[task_id]["test"])

    #prompt = sample["prompt"]
    if example_test and "example_test" in problems[task_id] and problems[task_id]["example_test"] != "":
        test = problems[task_id]["example_test"]
    else:
        test = problems[task_id]["test"]
        test = "\n".join(test)

    code = sample["generation"]

    # Pre-process for different languages
    if language == "python":
        test_setup = "\n".join(IMPORT_HELPER["python"]) + "\n"
        test_string = test_setup + code + "\n" + test + "\n"
    elif language == "cpp":
        test_set_up = ""
        for s in IMPORT_HELPER["cpp"]:
            if s not in prompt:
                test_set_up += s + "\n"
        test_string = test_set_up + "\n" + code + "\n" + test
    elif language == "java":
        test_string = code + "\n" + test
    elif language == "cs":
        test_set_up = ""
        for s in IMPORT_HELPER["cs"]:
            test_set_up += s + "\n"
        test_string = test_set_up + "\n" + code + "\n" + test
    elif language in ["js", "javascript", "ts", "sh", "go"]:
        test_string = code + "\n" + test
    elif language == "go232":
        import_string = problems[task_id]["import"]
        prompt = prompt.replace(import_string, "")
        if example_test and "example_test" in problems[task_id]:
            test = problems[task_id]["example_test"]
        else:
            test = problems[task_id]["test"]
        test_setup = problems[task_id]["test_setup"]
        other_pkgs = []
        for pkg in IMPORT_HELPER["go"]:
            if pkg not in test_setup:
                p = pkg.split("/")[-1]
                if p + "." in code:
                    other_pkgs.append(f"\"{pkg}\"")
        if other_pkgs:
            import_other_pkgs = "import (\n" + "    ".join([p + "\n" for p in other_pkgs]) + ")"
            test_string = test_setup + "\n" + import_other_pkgs + "\n" + prompt + code + "\n" + test
        else:
            test_string = test_setup + "\n" + prompt + code + "\n" + test
    elif language == "rust":
        main = "\nfn main(){ \n } \n"
        declaration = problems[task_id]["declaration"]
        test_string = main + declaration + prompt + code + test
    elif language == "php":
        if code[:5] != "<?php":
            code = "<?php\n" + code
        test_string = code + "\n" + test + "?>"
    return test_string


def stream_jsonl_all(filename: str) -> Iterable[Dict]:
    """
    Streams a JSONL file.
    """
    results = []
    if filename.endswith(".gz"):
        fp = gzip.open(open(filename, "rb"), "rt")
    else:
        fp = open(filename, "r")
    for line in fp:
        if any(not x.isspace() for x in line):
            results.append(json.loads(line))
    fp.close()

    return results


def evaluate_functional_correctness(
        input_file: str = None,
        tmp_dir: str = "./",
        n_workers: int = 32,
        timeout: float = 10.0,
        problem_file: str = "../data/humaneval_python.jsonl.gz",
        out_dir: str = None,
        k: List[int] = [1, 10, 100],
        test_groundtruth: bool = False,
        example_test: bool = False,
        is_mbpp: bool = False,
        language: str = "python",
):
    """
    Evaluates the functional correctness of a model.
    """
    if example_test:
        print("Example test...")

    problems = read_dataset(problem_file,
                            dataset_type="humaneval")
    sample_jsonl = stream_jsonl_all(input_file)


    with ThreadPoolExecutor(max_workers=n_workers) as executor:

        futures = []
        completion_id = Counter()
        n_samples = 0
        results = defaultdict(list)

        if test_groundtruth:
            print("Testing ground truth...")
            for sample in tqdm(problems.values()):
                task_id = sample["task_id"]
                lang = task_id.split("/")[0].lower()
                if lang == "javascript":
                    lang = "js"
                tmp_dir_ = os.path.join(tmp_dir, lang, "evaluation")
                sample["generation"] = sample["canonical_solution"]
                sample["test_code"] = process_humaneval_test(sample, problems, example_test, language)
                if sample["test_code"] is None:
                    continue
                args = (task_id, sample, lang, timeout, tmp_dir_, completion_id[task_id])
                future = executor.submit(check_correctness, *args)
                futures.append(future)
                completion_id[task_id] += 1
                n_samples += 1
        else:
            print("Reading samples...")
            for sample in tqdm(sample_jsonl):
                task_id = sample["task_id"]
                if not is_mbpp:
                    lang = language
                if not is_mbpp and lang == "javascript":
                    lang = "js"
                if is_mbpp:
                    lang = "python"
                tmp_dir_ = os.path.join(tmp_dir, lang, "evaluation")
                sample["task_id"] = task_id
                sample["test_code"] = process_humaneval_test(sample, problems, example_test, is_mbpp, language)
                if sample["test_code"] is None:
                    continue
                if "completion_id" in sample:
                    completion_id_ = sample["completion_id"]
                else:
                    completion_id_ = completion_id[task_id]
                args = (task_id, sample, lang, timeout, tmp_dir_, completion_id_)
                future = executor.submit(check_correctness, *args)
                futures.append(future)
                completion_id[task_id] += 1
                n_samples += 1

        if len(completion_id) == len(problems):
            evaluate_pass_at_k = True
        else:
            evaluate_pass_at_k = False

        print("Running test suites...")
        for future in tqdm(as_completed(futures), total=len(futures)):
            result = future.result()
            results[result["task_id"]].append((result["completion_id"], result))

    # Calculate pass@k.
    total, correct = [], []
    for result in results.values():
        passed = [r[1]["passed"] for r in result]
        total.append(len(passed))
        correct.append(sum(passed))
    total = np.array(total)
    correct = np.array(correct)
    if evaluate_pass_at_k:
        ks = k
        pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean()
                     for k in ks if (total >= k).all()}
        print(pass_at_k)
    else:
        print("Total:", np.sum(total))
        print("Correct:", np.sum(correct))
    return pass_at_k