File size: 8,481 Bytes
f1e6b80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import copy
import random
from dataclasses import dataclass, field
from typing import Optional, Dict, Sequence

import torch
import torch.distributed
import transformers
import wandb
from transformers import Trainer
from datasets import load_dataset


IGNORE_INDEX = -100
EOT_TOKEN = "<|EOT|>"

def build_instruction_prompt(instruction: str):
    return '''
You are an AI programming assistant specializing in Solana blockchain development, utilizing the DeepSeek Coder model. You excel at writing, reviewing, and explaining Solana smart contracts, Rust programs, and web3 applications. For questions not related to Solana development or blockchain programming, you will politely decline to answer.
### Instruction:
{}
### Response:
'''.format(instruction.strip()).lstrip()

@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="deepseek-ai/deepseek-coder-6.7b-instruct")

@dataclass
class DataArguments:
    data_path: str = field(default=None, metadata={"help": "Path to the training data."})


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    model_max_length: int = field(
        default=2048,  # Increased for longer Solana code contexts
        metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."},
    )

def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
    """Collects the state dict and dump to disk."""
    state_dict = trainer.model.state_dict()
    if trainer.args.should_save:
        cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
        del state_dict
        trainer._save(output_dir, state_dict=cpu_state_dict)  # noqa


def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
    """Tokenize a list of strings."""
    tokenized_list = [
        tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        )
        for text in strings
    ]

    input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
    input_ids_lens = labels_lens = [
        tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
    ]

    return dict(
        input_ids=input_ids,
        labels=labels,
        input_ids_lens=input_ids_lens,
        labels_lens=labels_lens,
    )


def preprocess(
    sources: Sequence[str],
    targets: Sequence[str],
    tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
    """Preprocess the data by tokenizing."""
    examples = [s + t for s, t in zip(sources, targets)]
    examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)]
    input_ids = examples_tokenized["input_ids"]

    labels = copy.deepcopy(input_ids)
    for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]):
        label[:source_len] = IGNORE_INDEX
    return dict(input_ids=input_ids, labels=labels)

@dataclass
class DataCollatorForSupervisedDataset(object):
    """Collate examples for supervised fine-tuning."""
    tokenizer: transformers.PreTrainedTokenizer

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels"))
        input_ids = [torch.tensor(x) for x in input_ids]
        input_ids = torch.nn.utils.rnn.pad_sequence(
            input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
        )
        labels = [torch.tensor(x) for x in labels]
        labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
        
        return dict(
            input_ids=input_ids,
            labels=labels,
            attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
        )

def train_tokenize_function(examples, tokenizer):
    sources = [
        build_instruction_prompt(instruction)
        for instruction in examples['instruction']
    ]
    targets = [f"{output}\n{EOT_TOKEN}" for output in examples['output']]
    data_dict = preprocess(sources, targets, tokenizer)
    return data_dict

class CustomTrainer(Trainer):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.best_loss = float('inf')

    def compute_loss(self, model, inputs, return_outputs=False):
        loss, outputs = super().compute_loss(model, inputs, return_outputs=True)
        
        # Log metrics to wandb
        if self.state.global_step % self.args.logging_steps == 0:
            wandb.log({
                "loss": loss.item(),
                "learning_rate": self.lr_scheduler.get_last_lr()[0],
                "epoch": self.state.epoch,
                "global_step": self.state.global_step
            })
            
            # Save best model
            if loss.item() < self.best_loss:
                self.best_loss = loss.item()
                self.save_model("best_model")
                
        return (loss, outputs) if return_outputs else loss

def train():
    parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    
    # Initialize wandb
    if training_args.local_rank == 0:
        wandb.init(
            project="solana-deepseek-coder",
            config={
                "model_name": model_args.model_name_or_path,
                "learning_rate": training_args.learning_rate,
                "batch_size": training_args.per_device_train_batch_size,
                "max_steps": training_args.max_steps,
                "warmup_steps": training_args.warmup_steps
            }
        )
        print('='*100)
        print(training_args)
    
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_args.model_name_or_path,
        model_max_length=training_args.model_max_length,
        padding_side="right",
        use_fast=True,
        trust_remote_code=True
    )

    print("PAD Token:", tokenizer.pad_token, tokenizer.pad_token_id)
    print("BOS Token", tokenizer.bos_token, tokenizer.bos_token_id)
    print("EOS Token", tokenizer.eos_token, tokenizer.eos_token_id)

    if training_args.local_rank == 0:
        print("Load tokenizer from {} over.".format(model_args.model_name_or_path))

    model = transformers.AutoModelForCausalLM.from_pretrained(
        model_args.model_name_or_path,
        torch_dtype=torch.bfloat16,
        device_map="auto"  # Enable automatic device mapping
    )

    if training_args.local_rank == 0:
        print("Load model from {} over.".format(model_args.model_name_or_path))

    raw_train_datasets = load_dataset(
        'json',
        data_files=data_args.data_path,
        split="train",
        cache_dir=training_args.cache_dir
    )
    if training_args.local_rank > 0: 
        torch.distributed.barrier()
        
    train_dataset = raw_train_datasets.map(
        train_tokenize_function,
        batched=True,
        batch_size=3000,
        num_proc=32,
        remove_columns=raw_train_datasets.column_names,
        load_from_cache_file=True,
        desc="Running Encoding",
        fn_kwargs={ "tokenizer": tokenizer }
    )

    if training_args.local_rank == 0:
        torch.distributed.barrier()
    
    if training_args.local_rank == 0:
        print("Training dataset samples:", len(train_dataset))
        for index in random.sample(range(len(train_dataset)), 3):
            print(f"Sample {index} of the training set: {train_dataset[index]['input_ids']}, {train_dataset[index]['labels']}.")
            print(f"Sample {index} of the training set: {tokenizer.decode(list(train_dataset[index]['input_ids']))}.")

    data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
    data_module = dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)

    trainer = CustomTrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)

    trainer.train()
    trainer.save_state()
    safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)

    if training_args.local_rank == 0:
        wandb.finish()


if __name__ == "__main__":
    train()