File size: 6,314 Bytes
573eeaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# **Model Card: DeepSolanaCoder**  
**By 8BitLabs**  
**First-of-its-Kind Solana-Centric Language Model**  
**Release Date: 2025-01-24**  

---

### **Model Overview**  
**DeepSolanaCoder** is a specialized large language model (LLM) trained to excel in Solana blockchain development, leveraging **ZK-compressed datasets**, **recursive Solana program library (SPL) data**, and **NFT metadata** for vision analysis. Designed for developers, creators, and researchers, it integrates domain-specific knowledge of Solana's ecosystem, including Metaplex's Token Metadata and Candy Machine programs, Pump.fun contracts, and SPL governance frameworks. The model's training corpus includes:  
- **1,000+ Solana Q&A prompts** covering blockchain mechanics, Rust programming, and SPL standards.  
- **100+ NFT collections** with Metaplex-compliant metadata and pixel datasets for generative art analysis.  
- **ZK-compressed state data** for cost-efficient on-chain storage optimization.  
- **Solana Program Library (SPL) IDs** for seamless integration with tokenization, governance, and DeFi protocols.  

---

### **Model Details**  
#### **Developed By**  
8BitLabs (Solana Ecosystem Partner).  

#### **Model Type**  
- **Architecture**: Hybrid causal language model (decoder-only), optimized for Rust/Solana code generation.  
- **Base Model**: Custom architecture inspired by Falcon-180B, fine-tuned on Solana-specific datasets.  

#### **Languages**  
- **Primary**: Rust (Solana smart contracts), TypeScript (frontend integration).  
- **Secondary**: English (documentation and Q&A).  

#### **License**  
Proprietary (commercial use permitted under 8BitLabs Agreement).  

#### **Unique Features**  
- **Code Autocompletion**: Generates boilerplate code for SPL tokens, NFT minting, and Candy Machine deployments.  
- **ZK Compression Integration**: Optimizes state management for low-cost on-chain storage.  
- **Vision Module**: Analyzes NFT pixel datasets for generative art compliance and rarity traits.  

---

### **Intended Uses**  
#### **Direct Use**  
1. **Smart Contract Development**:  
   - Generate Rust code for Solana programs (e.g., token minting, governance voting).  
   - Debug common Anchor framework errors.  
2. **NFT Tooling**:  
   - Automate Metaplex metadata creation and Candy Machine configurations.  
   - Analyze pixel datasets for generative art rarity (e.g., trait distributions).  
3. **Educational Support**:  
   - Answer Solana-specific questions (e.g., "How to handle PDAs in Rust?").  

#### **Downstream Use**  
- **AI-Powered Dev Tools**: Integrate into IDEs for real-time code suggestions.  
- **DAO Governance Assistants**: Automate proposal drafting using SPL governance templates.  

#### **Out-of-Scope Use**  
- Financial advice or market predictions.  
- Non-Solana blockchain development (e.g., Ethereum, Bitcoin).  

---

### **Training Data**  
#### **Core Datasets**  
1. **Solana Q&A Prompts**:  
   - Curated from Solana Stack Exchange, developer forums, and official docs.  
   - Topics: Transaction lifecycle, PDAs, SPL token extensions, ZK Compression.  
2. **NFT Metadata**:  
   - 100+ collections compliant with Metaplex's Token Metadata standard (e.g., name, URI, attributes).  
3. **Program Library IDs**:  
   - SPL token, governance, and compression program IDs for on-chain interoperability.  
4. **ZK-Compressed Data**:  
   - State roots and validity proofs for efficient ledger storage.  

#### **Preprocessing**  
- **Tokenization**: Custom Solana-Rust tokenizer with SPL-specific keywords.  
- **Compression**: ZK-SNARK proofs applied to reduce dataset size by 160x.  

---

### **Technical Specifications**  
#### **Model Architecture**  
- **Layers**: 80 transformer layers with rotary positional embeddings.  
- **Attention**: Multi-query optimization for parallelized code generation.  
- **Training Hardware**: 512 A100 80GB GPUs (AWS SageMaker).  

#### **Software**  
- **Frameworks**: PyTorch 2.0, Solana CLI, Anchor Framework.  
- **Libraries**: Metaplex's `mpl-token-metadata`, Light Protocol's ZK circuits.  

---

### **Evaluation**  
#### **Benchmarks**  
| **Task**               | **Accuracy** | **Dataset**                  |  
|-------------------------|--------------|------------------------------|  
| Rust Code Generation    | 92%          | 500 Solana Program Examples  |  
| NFT Metadata Compliance | 88%          | Metaplex Token Metadata  |  
| ZK Proof Generation     | 85%          | Light Protocol Test Suite  |  

---

### **Ethical Considerations**  
#### **Bias and Risks**  
- **Overfitting to Solana**: Limited utility for non-Solana blockchains.  
- **Data Privacy**: NFT metadata sourced from public collections only.  

#### **Recommendations**  
- Fine-tune for specific use cases (e.g., gaming NFTs, DAO governance).  
- Pair with human review for critical financial applications.  

---

### **How to Get Started**  
#### **Code Example**  
```python  
from transformers import AutoModelForCausalLM, AutoTokenizer  

model = AutoModelForCausalLM.from_pretrained("8BitLabs/DeepSolanaCoder")  
tokenizer = AutoTokenizer.from_pretrained("8BitLabs/DeepSolanaCoder")  

prompt = "Write a Solana program to mint an NFT with Metaplex metadata."  
inputs = tokenizer(prompt, return_tensors="pt")  
outputs = model.generate(**inputs, max_length=512)  
print(tokenizer.decode(outputs[0]))  
```  

#### **Deployment Scripts**  
- **Candy Machine Setup**: Use `sugar launch` for automated NFT collection deployment.  
- **ZK Compression**: Integrate Light Protocol's SDK for state optimization.  

---

### **Environmental Impact**  
- **Carbon Emissions**: ~120 tCO2eq (estimated via ML Impact Calculator).  
- **Hardware**: AWS P4d instances, 3D parallelism with ZeRO optimization.  

---

### **Citation**  
```bibtex  
@article{deepsolanacoder,  
  title={DeepSolanaCoder: A ZK-Compressed Language Model for Solana Blockchain Development},  
  author={8BitLabs},  
  year={2025},  
  url={https://8bitlabs.ai}  
}  
```  

---

**Model Card Contact**: [email protected]  
**License Agreement**: [8BitLabs DeepSolanaCoder License](https://8bitlabs.ai/license)  

--- 

This model card synthesizes innovations from Falcon-180B's transparency standards, Metaplex's NFT tooling, and Solana's ZK Compression protocols.