|
import os |
|
import re |
|
import json |
|
import argparse |
|
import torch |
|
import numpy as np |
|
from utils.parser import * |
|
from utils.grader import * |
|
from utils.python_executor import PythonExecutor |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
|
|
|
|
def extract_python_block_with_solution(text): |
|
""" |
|
Extract the code block from the text that contains the solution function. |
|
:param text: The text to search for the code block. |
|
:return: The extracted code block. |
|
""" |
|
pattern = r'```python\n(.*?)def solution\(\):\n(.*?)```' |
|
match = re.search(pattern, text, re.DOTALL) |
|
if match: |
|
return match.group(1) + 'def solution():\n' + match.group(2) |
|
else: |
|
return "" |
|
|
|
def load_data(args): |
|
""" |
|
Load data from file. |
|
:param args: Arguments. |
|
:return: A list of examples. |
|
""" |
|
if args.data_name != "math": |
|
prompt = open("prompts/gsm8k.md").read() |
|
else: |
|
prompt = open("prompts/math.md").read() |
|
|
|
examples = [] |
|
with open(f"datasets/{args.data_name}/test.json", "r") as f: |
|
for line in f: |
|
js = json.loads(line) |
|
examples.append(js) |
|
|
|
|
|
samples = [] |
|
for example in examples: |
|
idx = example['idx'] |
|
example['question'] = parse_question(example, args.data_name) |
|
gt_cot, gt_ans = parse_ground_truth(example, args.data_name) |
|
example["input"] = f"{prompt}\n\nQuestion: {example['question']}\n" |
|
example = {'idx': idx, 'question': example['question'], 'gt_cot': gt_cot, 'gt': gt_ans, 'prompt': example["input"]} |
|
samples.append(example) |
|
|
|
return samples |
|
|
|
def inference(args): |
|
""" |
|
Inference on the dataset. |
|
:param args: Arguments. |
|
:return: None |
|
""" |
|
|
|
samples = load_data(args) |
|
samples = [sample for i,sample in enumerate(samples) if i%args.world_size==args.rank] |
|
|
|
|
|
os.makedirs(f'outputs/{args.model_name}/{args.data_name}', exist_ok=True) |
|
|
|
|
|
executor = PythonExecutor(get_answer_expr='solution()') |
|
|
|
|
|
torch.set_default_tensor_type(torch.cuda.HalfTensor) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True,padding_side="left") |
|
try: |
|
tokenizer.pad_token_id = 0 |
|
except: |
|
|
|
pass |
|
llm = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, torch_dtype=torch.float16, device_map="auto",trust_remote_code=True) |
|
|
|
|
|
print("dataset:", args.data_name, "samples:", len(samples)) |
|
if len(samples) > 0: |
|
print("=" * 50) |
|
print("sample:", samples[0]['prompt']) |
|
print("=" * 50) |
|
|
|
stop_ids = [] |
|
stop_words = ["Question","----------------"] |
|
for x in stop_words: |
|
ids = tokenizer.encode(x) |
|
if tokenizer.decode(ids[-1:]) == x: |
|
stop_ids.append(ids[-1]) |
|
print("stop ids:", stop_ids) |
|
|
|
|
|
|
|
outputs = [] |
|
generation_config = GenerationConfig(num_beams=1,) |
|
for i in range(0, len(samples), args.batch_size): |
|
chunk = [x["prompt"] for x in samples[i:i+args.batch_size]] |
|
if "llama" in args.model_name_or_path.lower() and args.rank==3 and (i==164 or i==328): |
|
for x in chunk: |
|
outputs.append(x) |
|
continue |
|
inputs = tokenizer(chunk, return_tensors="pt",padding=True) |
|
input_ids = inputs["input_ids"].cuda()[:,-args.max_context_length:] |
|
attention_mask = inputs["attention_mask"].cuda()[:,-args.max_context_length:] |
|
|
|
with torch.no_grad(): |
|
generation_output = llm.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
do_sample=False, |
|
max_new_tokens=args.max_output_length, |
|
eos_token_id=stop_ids, |
|
pad_token_id=0 |
|
) |
|
|
|
answers = [] |
|
|
|
for i, a in enumerate(generation_output.sequences): |
|
a = a.tolist() |
|
a = a[input_ids.shape[-1]:] |
|
a = tokenizer.decode(a) |
|
for x in stop_words: |
|
if x in a: |
|
a = a[:a.index(x)] |
|
ans = extract_python_block_with_solution(a) |
|
answers.append(ans) |
|
if i == 0: |
|
print("="*80) |
|
print("Response:\n") |
|
print(a) |
|
print("Program:\n") |
|
print(ans) |
|
print("="*80) |
|
outputs.extend(answers) |
|
print("Rank",args.rank,"Processed Number:",len(outputs),flush=True) |
|
|
|
assert len(outputs) == len(samples) |
|
|
|
results = [x[0] for x in executor.batch_apply(outputs)] |
|
for result,code,sample in zip(results, outputs, samples): |
|
sample["code"] = code |
|
sample["pred"] = strip_string(result) |
|
|
|
|
|
out_file = f"world_size_{args.world_size}_rank_{args.rank}.json" |
|
with open(f"outputs/{args.model_name}/{args.data_name}/{out_file}", "w") as f: |
|
json.dump(samples,f,indent=4) |
|
|
|
def eval(args): |
|
""" |
|
Evaluate the results. |
|
:param args: Arguments. |
|
:return: None |
|
""" |
|
|
|
samples = [] |
|
for rank in range(args.world_size): |
|
out_file = f"outputs/{args.model_name}/{args.data_name}/world_size_{args.world_size}_rank_{rank}.json" |
|
if not os.path.exists(out_file): |
|
raise FileNotFoundError(f"File {out_file} does not exist.") |
|
samples.extend(json.load(open(out_file,"r"))) |
|
print("Dataset:",args.data_name) |
|
print("Model:",args.model_name) |
|
print("Loaded Examples:",len(samples)) |
|
scores = [] |
|
for x in samples: |
|
scores.append(math_equal(x["gt"],x["pred"])) |
|
print("Mean Score",np.mean(scores)) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--data_name", default="math", type=str) |
|
parser.add_argument("--model_name_or_path", default="deepseek/deepseek-coder-1b-python", type=str) |
|
parser.add_argument("--batch_size", default=16, type=int) |
|
parser.add_argument("--max_context_length", default=2048, type=int) |
|
parser.add_argument("--max_output_length", default=512, type=int) |
|
parser.add_argument("--do_inference", action="store_true") |
|
parser.add_argument("--do_eval", action="store_true") |
|
parser.add_argument("--rank", default=0, type=int) |
|
parser.add_argument("--world_size",default=1, type=int) |
|
args = parser.parse_args() |
|
|
|
args.model_name = args.model_name_or_path.strip("/").split("/")[-1] |
|
if args.do_inference: |
|
print(args) |
|
inference(args) |
|
elif args.do_eval: |
|
eval(args) |
|
|